Bài toán này thường yêu cầu học sinh vận dụng các kiến thức về hàm số, đạo hàm, hoặc các chủ đề khác đã được học để tìm ra lời giải chính xác.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm các giới hạn sau :
\(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 8} \right|\)
Phương pháp giải:
Thay giá trị của x vào các hàm số suy ra giới hạn.
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to \sqrt 3 } \left| {{x^2} - 8} \right| = \left| {{{\left( {\sqrt 3 } \right)}^2} - 8} \right| = 5\)
\(\mathop {\lim }\limits_{x \to 2} {{{x^2} + x + 1} \over {{x^2} + 2x}}\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 2} {{{x^2} + x + 1} \over {{x^2} + 2x}} = {{{2^2} + 2 + 1} \over {{2^2} + 2.2}} = {7 \over 8}\)
\(\mathop {\lim }\limits_{x \to - 1} \sqrt {{{{x^3}} \over {{x^2} - 3}}} \)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to - 1} \sqrt {{{{x^3}} \over {{x^2} - 3}}} =\sqrt {\frac{{{{\left( { - 1} \right)}^3}}}{{{{\left( { - 1} \right)}^2} - 3}}}\) \( = \sqrt {{1 \over 2}} = {{\sqrt 2 } \over 2}\)
\(\mathop {\lim }\limits_{x \to 3} \root 3 \of {{{2x\left( {x + 1} \right)} \over {{x^2} - 6}}} \)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to 3} \root 3 \of {{{2x\left( {x + 1} \right)} \over {{x^2} - 6}}} = \sqrt[3]{{\frac{{2.3\left( {3 + 1} \right)}}{{{3^2} - 6}}}}\) \(= \root 3 \of {{{24} \over 3}} = 2\)
\(\mathop {\lim }\limits_{x \to - 2} {{\sqrt {1 - {x^3}} - 3x} \over {2{x^2} + x - 3}}\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to - 2} {{\sqrt {1 - {x^3}} - 3x} \over {2{x^2} + x - 3}} \) \( = \frac{{\sqrt {1 - {{\left( { - 2} \right)}^3}} - 3.\left( { - 2} \right)}}{{2.{{\left( { - 2} \right)}^2} + \left( { - 2} \right) - 3}}\) \(= {{3 + 6} \over {8 - 5}} = 3\)
\(\mathop {\lim }\limits_{x \to - 2} {{2\left| {x + 1} \right| - 5\sqrt {{x^2} - 3} } \over {2x + 3}}\)
Lời giải chi tiết:
\(\mathop {\lim }\limits_{x \to - 2} {{2\left| {x + 1} \right| - 5\sqrt {{x^2} - 3} } \over {2x + 3}} \) \( = \frac{{2\left| { - 2 + 1} \right| - 5\sqrt {{{\left( { - 2} \right)}^2} - 3} }}{{2.\left( { - 2} \right) + 3}}\) \(= {{2 - 5} \over { - 4 + 3}} = 3\)
Bài toán Câu 30 trang 159 trong sách giáo khoa Đại số và Giải tích 11 Nâng cao thường là một bài tập ứng dụng, đòi hỏi học sinh phải hiểu rõ lý thuyết và kỹ năng giải toán đã học. Bài toán này thường thuộc các chủ đề như hàm số, đạo hàm, tích phân, hoặc các bài toán về hình học giải tích. Việc nắm vững phương pháp giải bài toán này không chỉ giúp học sinh đạt điểm cao trong các kỳ thi mà còn rèn luyện tư duy logic và khả năng giải quyết vấn đề.
(Nội dung đề bài cụ thể sẽ được chèn vào đây. Ví dụ: Cho hàm số y = f(x) = x^3 - 3x^2 + 2. Tìm các điểm cực trị của hàm số.)
Để giải bài toán Câu 30 trang 159, học sinh cần thực hiện các bước sau:
(Lời giải chi tiết, từng bước, có giải thích rõ ràng sẽ được trình bày ở đây. Ví dụ:)
Bước 1: Tính đạo hàm bậc nhất của hàm số y = f(x) = x^3 - 3x^2 + 2. Ta có: f'(x) = 3x^2 - 6x.
Bước 2: Tìm các điểm làm đạo hàm bậc nhất bằng 0: 3x^2 - 6x = 0 => x(3x - 6) = 0 => x = 0 hoặc x = 2.
Bước 3: Xét dấu đạo hàm bậc nhất để xác định các điểm cực trị:
Bước 4: Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Ngoài Câu 30 trang 159, còn rất nhiều bài tập tương tự trong sách giáo khoa và các đề thi. Dưới đây là một số dạng bài tập thường gặp:
Để học tốt môn Đại số và Giải tích 11 Nâng cao, bạn có thể tham khảo một số mẹo sau:
Câu 30 trang 159 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng, giúp học sinh củng cố kiến thức về hàm số và đạo hàm. Hy vọng với lời giải chi tiết và các phương pháp giải bài tập được trình bày ở trên, bạn sẽ tự tin hơn khi đối mặt với các bài toán tương tự.