Bài tập này yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ và ứng dụng của vectơ trong hình học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và BD ; P là một điểm thay đổi trên đoạn thẳng AD.
Đề bài
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và BD ; P là một điểm thay đổi trên đoạn thẳng AD.
a. Xác định giao điểm Q của mp(MNP) và cạnh AC. Tứ giác MNPQ là hình gì ?
b. Tìm quỹ tích giao điểm I của QM và PN
c. Tìm quỹ tích giao điểm J của QN và PM
Lời giải chi tiết
a. Kẻ đường thẳng qua P song song với CD cắt AC tại Q thì Q là giao điểm của AC và mp(MNP). Dễ thấy tứ giác MNPQ là hình thang (PQ // MN)
Chú ý : Nếu P ≡ A thì Q ≡ A ≡ P ; nếu P ≡ D thì Q ≡ C.
b. Thuận. Giả sử I là giao điểm của QM và PN. Theo định lí về giao tuyến của ba mặt phẳng (ABC), (ABD), (MNPQ) thì điểm I thuộc đường thẳng AB.
Vì P thay đổi trên đoạn thẳng AD nên dễ thấy I chỉ nằm trên phần của đường thẳng AB trừ đi các điểm trong đoạn thẳng AB.
Đảo. Lấy một điểm I bất kì thuộc đường thẳng AB nhưng không nằm giữa A và B. Gọi P, Q lần lượt là các giao điểm của IN với AD, của IM với AC. Khi đó rõ ràng mp(MNP) cắt AC tại Q và giao điểm của QM và PN là I.
Kết luận. Quỹ tích giao điểm I của QM và PN là đường thẳng AB trừ đi các điểm trong đoạn thẳng AB.
c. Tương tự như câu b, ta có quỹ tích giao điểm J của QN và MP là đoạn thẳng AO (O là giao điểm của DM và CN)
Bài tập Câu 4 trang 125 SGK Hình học 11 Nâng cao thường xoay quanh việc chứng minh đẳng thức vectơ, tìm mối quan hệ giữa các vectơ, hoặc xác định vị trí tương đối của các điểm trong không gian sử dụng vectơ. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản sau:
Để minh họa, giả sử bài tập Câu 4 trang 125 SGK Hình học 11 Nâng cao có nội dung như sau:
Cho hình bình hành ABCD. Gọi M là trung điểm của BC. Chứng minh rằng: overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2
Lời giải:
overrightarrow{AM} =overrightarrow{AB} +overrightarrow{BM} =overrightarrow{AB} + 1/2overrightarrow{BC} =overrightarrow{AB} + 1/2overrightarrow{AD}
Vì overrightarrow{AD} =overrightarrow{BC} =overrightarrow{AC} -overrightarrow{AB} nên:
overrightarrow{AM} =overrightarrow{AB} + 1/2(overrightarrow{AC} -overrightarrow{AB}) =overrightarrow{AB} + 1/2overrightarrow{AC} - 1/2overrightarrow{AB} = 1/2overrightarrow{AB} + 1/2overrightarrow{AC} = (overrightarrow{AB} +overrightarrow{AC})/2
Ngoài bài tập trên, Câu 4 trang 125 SGK Hình học 11 Nâng cao và các bài tập lân cận thường xuất hiện các dạng bài sau:
Để giải quyết các dạng bài tập này, học sinh cần:
Để học tốt môn Hình học 11 Nâng cao, học sinh có thể tham khảo các tài liệu sau:
Giaitoan.edu.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Hãy truy cập website của chúng tôi để xem thêm nhiều bài giải chi tiết và tài liệu học tập hữu ích khác.