Logo Header
  1. Môn Toán
  2. Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học.

Bài toán này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.

Cho hàm số

Đề bài

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{2\left| x \right| - 1\,\text{ với }\,x \le - 2,} \cr {\sqrt {2{x^2} + 1} \,\text{ với }\,x > - 2.} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right),\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\) \(\text{ và }\,\mathop {\lim }\limits_{x \to - 2} f\left( x \right)\) (nếu có).

Phương pháp giải - Xem chi tiếtCâu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao 1

Tìm hàm số ứng với điều kiện của x, từ đó tính giới hạn.

Chú ý: 

\(x \to x_0^ + \) nghĩa là \(x \to x_0 \) và \(x > x_0 \).

\(x \to x_0^ - \) nghĩa là \(x \to x_0 \) và \(x < x_0 \).

Lời giải chi tiết

Ta có:

\(\eqalign{& \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)= \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \left( {2\left| x \right| - 1} \right) \cr &= 2\left| { - 2} \right| - 1 = 3 \cr & \mathop {\lim f(x)}\limits_{x \to {{\left( { - 2} \right)}^ + }} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \sqrt {2{x^2} + 1} = 3 \cr & \text{Vì }\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)=\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)=3\cr &\Rightarrow \mathop {\lim }\limits_{x \to - 2} f\left( x \right) = 3. \cr} \)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao – hành trang không thể thiếu trong chuyên mục Đề thi Toán lớp 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải chi tiết Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là vô cùng quan trọng để giải quyết bài toán này một cách hiệu quả.

Phân tích đề bài và xác định yêu cầu

Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu. Thông thường, đề bài sẽ cho một hàm số và yêu cầu chúng ta:

  • Tính đạo hàm của hàm số.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số.

Phương pháp giải bài toán

Để giải quyết Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao, chúng ta có thể áp dụng các bước sau:

  1. Bước 1: Tính đạo hàm cấp một (y') của hàm số. Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số.
  2. Bước 2: Tìm các điểm cực trị của hàm số. Giải phương trình y' = 0 để tìm các giá trị x mà tại đó đạo hàm bằng 0. Các giá trị x này là các điểm cực trị của hàm số.
  3. Bước 3: Xác định khoảng đồng biến, nghịch biến của hàm số. Xét dấu đạo hàm y' trên các khoảng xác định của hàm số. Nếu y' > 0 trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu y' < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
  4. Bước 4: Vẽ đồ thị hàm số. Sử dụng các thông tin đã tìm được ở các bước trên để vẽ đồ thị hàm số. Xác định các điểm cực trị, khoảng đồng biến, nghịch biến và các điểm đặc biệt khác của đồ thị.

Ví dụ minh họa

Giả sử hàm số được cho là y = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước trên để giải bài toán:

  1. Bước 1: Tính đạo hàm cấp một. y' = 3x2 - 6x
  2. Bước 2: Tìm các điểm cực trị. Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2. Vậy hàm số có hai điểm cực trị là x = 0 và x = 2.
  3. Bước 3: Xác định khoảng đồng biến, nghịch biến. Xét dấu y' = 3x(x - 2). Ta có:

    • Khi x < 0, y' > 0, hàm số đồng biến.
    • Khi 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Khi x > 2, y' > 0, hàm số đồng biến.
  4. Bước 4: Vẽ đồ thị hàm số. Dựa vào các thông tin trên, chúng ta có thể vẽ đồ thị hàm số y = x3 - 3x2 + 2.

Lưu ý quan trọng

Khi giải Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao, cần lưu ý những điều sau:

  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Phân tích kỹ kết quả để đưa ra kết luận chính xác.
  • Thực hành nhiều bài tập tương tự để nắm vững kiến thức.

Ứng dụng của bài toán

Việc giải quyết Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao không chỉ giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của nó trong việc khảo sát hàm số, mà còn là nền tảng quan trọng cho việc học các môn học khác liên quan đến toán học và khoa học kỹ thuật.

Tổng kết

Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao là một bài toán điển hình trong chương trình học lớp 11. Bằng cách áp dụng các phương pháp giải phù hợp và thực hành thường xuyên, học sinh có thể tự tin giải quyết bài toán này và nâng cao kiến thức về đạo hàm và khảo sát hàm số.

Tài liệu, đề thi và đáp án Toán 11