Bài toán này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Cho hàm số
Đề bài
Cho hàm số
\(f\left( x \right) = \left\{ {\matrix{{2\left| x \right| - 1\,\text{ với }\,x \le - 2,} \cr {\sqrt {2{x^2} + 1} \,\text{ với }\,x > - 2.} \cr} } \right.\)
Tìm \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right),\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)\) \(\text{ và }\,\mathop {\lim }\limits_{x \to - 2} f\left( x \right)\) (nếu có).
Phương pháp giải - Xem chi tiết
Tìm hàm số ứng với điều kiện của x, từ đó tính giới hạn.
Chú ý:
\(x \to x_0^ + \) nghĩa là \(x \to x_0 \) và \(x > x_0 \).
\(x \to x_0^ - \) nghĩa là \(x \to x_0 \) và \(x < x_0 \).
Lời giải chi tiết
Ta có:
\(\eqalign{& \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)= \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} \left( {2\left| x \right| - 1} \right) \cr &= 2\left| { - 2} \right| - 1 = 3 \cr & \mathop {\lim f(x)}\limits_{x \to {{\left( { - 2} \right)}^ + }} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} \sqrt {2{x^2} + 1} = 3 \cr & \text{Vì }\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} f\left( x \right)=\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right)=3\cr &\Rightarrow \mathop {\lim }\limits_{x \to - 2} f\left( x \right) = 3. \cr} \)
Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là vô cùng quan trọng để giải quyết bài toán này một cách hiệu quả.
Trước khi bắt đầu giải bài toán, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu. Thông thường, đề bài sẽ cho một hàm số và yêu cầu chúng ta:
Để giải quyết Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao, chúng ta có thể áp dụng các bước sau:
Giả sử hàm số được cho là y = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước trên để giải bài toán:
Khi giải Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao, cần lưu ý những điều sau:
Việc giải quyết Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao không chỉ giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của nó trong việc khảo sát hàm số, mà còn là nền tảng quan trọng cho việc học các môn học khác liên quan đến toán học và khoa học kỹ thuật.
Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao là một bài toán điển hình trong chương trình học lớp 11. Bằng cách áp dụng các phương pháp giải phù hợp và thực hành thường xuyên, học sinh có thể tự tin giải quyết bài toán này và nâng cao kiến thức về đạo hàm và khảo sát hàm số.