Bài tập Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng trong chương trình học. Bài toán này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập.
Cho một tam giác đều ABC cạnh a.
Tìm giới hạn của các dãy số (pn) và (Sn).
Lời giải chi tiết:
Ta có:
\({p_1} = {a \over 2} + {a \over 2} + {a \over 2} = {{3a} \over 2};\)
\({p_2} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4}= {{3a} \over 4} = {{3a} \over {{2^2}}}\)
...
\({p_n} = {{3a} \over {{2^n}}}\) (1)
Chứng minh bằng qui nạp:
+) Với n=1 thì \({p_1} = \frac{{3a}}{2}\) (đúng).
+) Giả sử (1) đúng với n=k, tức là \({p_k} = {{3a} \over {{2^k}}}\). Ta chứng minh (1) đúng với n=k+1.
Tam giác \({A_{k + 1}}{B_{k + 1}}{C_{k + 1}}\) đồng dạng tam giác \(A_kB_kC_k\) theo tỉ số \(\frac{1}{2}\) nên có chu vi \({p_{k + 1}} = \frac{1}{2}{p_k} = \frac{1}{2}.\frac{{3a}}{{{2^k}}} = \frac{{3a}}{{{2^{k + 1}}}}\)
Do đó ta có \({p_n} = \frac{{3a}}{{{2^n}}}\).
Vì \(\lim {1 \over {{2^n}}} = \lim {\left( {{1 \over 2}} \right)^n} = 0\text { nên }\lim {p_n} = 0\)
Diện tích tam giác ABC là \(S = {{{a^2}\sqrt 3 } \over 4}\). Diện tích tam giác A1B1C1là \({S_1} = {S \over 4}\)
Bằng phương pháp qui nạp, ta chứng minh được rằng diện tích tam giác \({A_n}{B_n}{C_n}\) là \({S_n} = {{{a^2}\sqrt 3 } \over 4}.{\left( {{1 \over 4}} \right)^n}\)
Vì \(\lim {\left( {{1 \over 4}} \right)^n} = 0\) nên \(\lim {S_n} = 0\).
Tìm các tổng
\({p_1} + {p_2} + ... + {p_n} + ...\) và \({S_1} + {S_2} + ... + {S_n} + ...\)
Phương pháp giải:
Sử dụng công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\)
Lời giải chi tiết:
Ta có (pn) là cấp số nhân lùi vô hạn có công bội \(q = {1 \over 2},\) do đó :
\({p_1} + {p_2} + ... + {p_n} + ... = {{{p_1}} \over {1 - {1 \over 2}}}\) \( = 2{p_1}= 2.\frac{{3a}}{2} = 3a\)
(Sn) là cấp số nhân lùi vô hạn có công bội \(q' = {1 \over 4}\) do đó :
\({S_1} + {S_2} + ... + {S_n} + ... = {{{S_1}} \over {1 - {1 \over 4}}} \) \(= {4 \over 3}{S_1} = {S \over 3} = {{{a^2}\sqrt 3 } \over {12}}\)
Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao là một bài toán thuộc chương trình học về đạo hàm của hàm số. Bài toán này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Thông thường, bài toán Câu 8 trang 135 sẽ yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:
Để giải quyết bài toán Câu 8 trang 135 một cách hiệu quả, học sinh cần nắm vững các bước sau:
Giả sử bài toán yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:
f'(x) = 3x2 + 4x - 5
Ngoài việc tính đạo hàm trực tiếp, bài toán Câu 8 trang 135 còn có thể xuất hiện các dạng bài tập khác như:
Để giải nhanh các bài toán Câu 8 trang 135, học sinh có thể áp dụng một số mẹo sau:
Để học tập và ôn luyện kiến thức về đạo hàm và giải các bài toán Câu 8 trang 135, học sinh có thể tham khảo các tài liệu sau:
Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng giúp học sinh củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải bài tập. Bằng cách nắm vững các khái niệm, quy tắc đạo hàm và áp dụng các phương pháp giải phù hợp, học sinh có thể tự tin giải quyết bài toán này một cách hiệu quả.