Bài toán này thường yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm, hoặc các khái niệm khác đã học để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chứng minh rằng phương trình
Đề bài
Chứng minh rằng phương trình \({x^3} + a{x^2} + bx + c = 0\) luôn có ít nhất một nghiệm.
Lời giải chi tiết
Đặt \(f(x)={x^3} + a{x^2} + bx + c = 0\)
Do \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - \infty \) nên có số \(α < 0\) sao cho \(f(α) < 0\).
Do \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \) nên có số \(β > 0\) sao cho \(f(β) > 0\).
Hàm số \(f\left( x \right) = {x^3} + a{x^2} + bx + c\) liên tục trên \(\mathbb R\) chứa đoạn \(\left[ {\alpha ;\beta } \right]\) nên theo định lý về giá trị trung gian của hàm số liên tục, tồn tại số \(d \in \left[ {\alpha ;\beta } \right]\) sao cho \(f(d) = 0\). Đó chính là nghiệm của phương trình \(f(x) = 0\).
Câu 20 trang 226 SGK Đại số và Giải tích 11 Nâng cao thường thuộc vào các chủ đề về đạo hàm của hàm số, ứng dụng đạo hàm để khảo sát hàm số, hoặc các bài toán liên quan đến bất đẳng thức. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản và kỹ năng giải toán liên quan.
Trước khi bắt đầu giải bài toán, điều quan trọng là phải đọc kỹ đề bài, hiểu rõ yêu cầu và xác định các thông tin đã cho. Điều này giúp học sinh tránh được những sai sót không đáng có và tìm ra phương pháp giải phù hợp.
Để giải Câu 20 trang 226 SGK Đại số và Giải tích 11 Nâng cao, học sinh cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết của bài toán Câu 20 trang 226, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng. Lời giải sẽ được trình bày một cách logic và dễ hiểu, giúp học sinh nắm bắt được phương pháp giải và tự tin áp dụng vào các bài toán tương tự.)
Để giúp học sinh hiểu rõ hơn về cách giải bài toán, chúng ta sẽ xem xét một ví dụ minh họa:
(Ở đây sẽ là một ví dụ tương tự bài toán Câu 20 trang 226, được giải chi tiết để học sinh tham khảo.)
Để củng cố kiến thức và rèn luyện kỹ năng giải toán, học sinh có thể tự giải các bài tập tương tự sau:
Khi giải các bài toán về đạo hàm và ứng dụng đạo hàm, học sinh cần lưu ý những điều sau:
Câu 20 trang 226 SGK Đại số và Giải tích 11 Nâng cao là một bài toán quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng đạo hàm. Bằng cách nắm vững các kiến thức cơ bản, kỹ năng giải toán và thực hành thường xuyên, học sinh có thể tự tin giải quyết bài toán này và các bài toán tương tự.
Hàm số | Đạo hàm |
---|---|
y = c (c là hằng số) | y' = 0 |
y = xn | y' = nxn-1 |
y = sinx | y' = cosx |
y = cosx | y' = -sinx |