Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
a. Cho hàm số
Cho hàm số \(f\left( x \right) = \tan x.\) Tính \({f^{\left( n \right)}}\left( x \right)\) với n = 1, 2, 3.
Phương pháp giải:
Sử dụng công thức đạo hàm \(\left( {\tan x} \right)' = 1 + {\tan ^2}x\)
Lời giải chi tiết:
f’(x) = 1 + tan2x
f’’(x) = 2tanx(1 + tan2x) = 2tanx + 2tan3x
f(3)(x) = 2(1 + tan2x) + 2.3tan2x(1 + tan2x)
= 2+ 2tan2x + 6tan2x+ 6tan4x
= 2+ 8tan2x+ 6tan4x
Chứng minh rằng nếu \(f\left( x \right) = {\sin ^2}x\) thì \({f^{\left( {4n} \right)}}\left( x \right) = - {2^{4n - 1}}\cos 2x\)
Phương pháp giải:
Chứng minh bằng phương pháp qui nạp.
Lời giải chi tiết:
\({f^{\left( {4n} \right)}}\left( x \right) = - {2^{4n - 1}}\cos 2x\) (1)
Với n = 1 ta có:
\(\begin{array}{l}f'\left( x \right) = 2\sin x\cos x= \sin 2x\\f"\left( x \right) = 2\cos 2x\\{f^{\left( 3 \right)}}\left( x \right) = - 4\sin 2x\\{f^{\left( 4 \right)}}\left( x \right) = - 8\cos 2x = - {2^{4.1 - 1}}\cos 2x\end{array}\)
Vậy (1) đúng với n = 1
Giả sử (1) đúng với n = k tức là : \({f^{\left( {4k} \right)}}\left( x \right) = - {2^{4k - 1}}\cos 2x\)
Với n = k + 1 ta có :
\(\begin{array}{l}{f^{\left( {4k + 1} \right)}}\left( x \right) = \left( {{f^{\left( {4k} \right)}}\left( x \right)} \right)' = {2^{4k}}\sin 2x\\{f^{\left( {4k + 2} \right)}}\left( x \right) = {2^{4k + 1}}\cos 2x\\{f^{\left( {4k + 3} \right)}}\left( x \right) = - {2^{4k + 2}}\sin 2x\\{f^{\left( {4k + 4} \right)}}\left( x \right) = - {2^{4k + 3}}\cos 2x \\= - {2^{4\left( {k + 1} \right) - 1}}\cos 2x\end{array}\)
Vậy (1) đúng với n = k + 1 do đó (1) đúng với mọi n.
Câu 47 trang 219 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu. Thông thường, đề bài sẽ cung cấp một hàm số cụ thể và yêu cầu:
Để giải quyết bài toán này, chúng ta sẽ áp dụng các bước sau:
Giả sử hàm số được cho là: y = x3 - 3x2 + 2
Bước 1: Tập xác định: D = R
Bước 2: Đạo hàm bậc nhất: y' = 3x2 - 6x
Bước 3: Tìm điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Xét dấu y':
Vậy hàm số có cực đại tại x = 0, ymax = 2 và cực tiểu tại x = 2, ymin = -2
Bước 4: Đạo hàm bậc hai: y'' = 6x - 6
Bước 5: Xác định khoảng lồi, lõm và điểm uốn: 6x - 6 = 0 => x = 1
Xét dấu y'':
Vậy hàm số có điểm uốn tại x = 1, y = 0
Khi giải bài toán này, cần lưu ý một số điểm sau:
Câu 47 trang 219 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng đạo hàm để khảo sát hàm số. Bằng cách nắm vững phương pháp giải và thực hành thường xuyên, bạn sẽ tự tin giải quyết các bài toán tương tự một cách hiệu quả.