Bài toán này thường yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ, và ứng dụng vào hình học không gian.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và kỹ năng giải bài tập.
Trong mặt phẳng (P) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d đôi một song song với nhau và không nằm trên (P). Một mặt phẳng cắt a, b, c, d lần lượt tại bốn điểm A’, B’, C’, D’. Chứng minh rằng A’B’C’D’ là hình bình hành
Đề bài
Trong mặt phẳng (P) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d đôi một song song với nhau và không nằm trên (P). Một mặt phẳng cắt a, b, c, d lần lượt tại bốn điểm A’, B’, C’, D’. Chứng minh rằng A’B’C’D’ là hình bình hành
Phương pháp giải - Xem chi tiết
- Chứng minh (a,d)//(b,c), sử dụng: "Mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q) thì (P)//(Q)".
- Chứng minh A'D'//B'C' dựa vào định lí: "Nếu hai mặt phẳng (P) và (Q) song song thì mọi mặt phẳng (R) đã cắt (P) thì sẽ cắt (Q) và các giao tuyến của chúng song song."
Lời giải chi tiết
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}a//b\\b \subset \left( {b,c} \right)\end{array} \right. \Rightarrow a//\left( {b,c} \right)\\\left\{ \begin{array}{l}AD//BC\\BC \subset \left( {b,c} \right)\end{array} \right. \Rightarrow AD//\left( {b,c} \right)\end{array}\)
Mà \(a \cap AD = A\) và \(a,AD \subset \left( {a,d} \right)\) nên (a,d)//(b,c).
Vì hai mặt phẳng (a, d) và (b, c) song song nhau nên mp(A’B’C’) cắt hai mặt phẳng này lần lượt theo hai giao tuyến A’D’ và B'C’ song song với nhau.
Lại có:
\(\begin{array}{l}\left\{ \begin{array}{l}a//d\\d \subset \left( {c,d} \right)\end{array} \right. \Rightarrow a//\left( {c,d} \right)\\\left\{ \begin{array}{l}AB//CD\\CD \subset \left( {c,d} \right)\end{array} \right. \Rightarrow AB//\left( {c,d} \right)\end{array}\)
Mà \(a \cap AB = A\) và \(a,AB \subset \left( {a,b} \right)\) nên (a,b)//(c,d).
Vì hai mặt phẳng (a,b) và (c,d) song song nhau nên mp(A’B’C’) cắt hai mặt phẳng này lần lượt theo hai giao tuyến A’B’ và C'D’ song song với nhau.
Vậy A’B’C’D’ là hình bình hành.
Câu 33 trang 68 SGK Hình học 11 Nâng cao thường thuộc chương trình học về vectơ trong không gian. Để giải quyết bài toán này, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Để giải quyết Câu 33 trang 68, trước hết cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Thông thường, bài toán sẽ cung cấp thông tin về các điểm, vectơ, hoặc các yếu tố hình học khác trong không gian. Dựa vào đó, học sinh cần:
(Giả sử đề bài yêu cầu tính góc giữa hai vectơ a và b)
Bước 1: Xác định tọa độ của hai vectơ a và b.
Bước 2: Sử dụng công thức tính tích vô hướng:
a.b = |a| * |b| * cos(θ)
Trong đó:
Bước 3: Tính cos(θ) và suy ra góc θ.
Ngoài việc tính góc giữa hai vectơ, Câu 33 trang 68 và các bài tập tương tự có thể yêu cầu học sinh:
Để giải bài tập vectơ một cách hiệu quả, học sinh nên:
Để học tập và ôn luyện kiến thức về vectơ, học sinh có thể tham khảo các tài liệu sau:
Câu 33 trang 68 SGK Hình học 11 Nâng cao là một bài toán quan trọng giúp học sinh củng cố kiến thức về vectơ và ứng dụng vào hình học không gian. Bằng cách nắm vững các kiến thức cơ bản, thực hành các phép toán vectơ, và sử dụng các mẹo giải bài tập hiệu quả, học sinh có thể tự tin giải quyết bài toán này và các bài tập tương tự.