Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Chứng minh rằng phương trình
Đề bài
Chứng minh rằng phương trình
\({x^4} - 3{x^2} + 5x - 6 = 0\)
Có ít nhất một nghiệm thuộc khoảng (1 ; 2).
Phương pháp giải - Xem chi tiết
Sử dụng định lý: Nếu hàm số f(x) liên tục trên đoạn [a;b] và \(f(a).f(b)<0\) thì tồn tại ít nhất một điểm c∈(a;b) sao cho f(c)=0.
Lời giải chi tiết
Hàm số \(f\left( x \right) = {x^4} - 3{x^2} + 5x - 6\) liên tục trên đoạn \(\left[ {1;2} \right].\)
Ta có: \(f(1) = -3 < 0\) và \(f(2) = 8 > 0\)
Từ đó \(f(1).f(2) < 0\) nên theo hệ quả của định lí về giá trị trung gian của hàm số liên tục, tồn tại ít nhất một số thực \(c \in (1 ; 2)\) sao cho \(f(c) = 0\).
Số thực c là một nghiệm của phương trình đã cho.
Câu 62 trang 178 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học về đạo hàm của hàm số. Bài toán này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán liên quan đến hàm số.
Thông thường, câu 62 trang 178 sẽ đưa ra một hàm số cụ thể và yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:
Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các phương pháp sau:
Giả sử bài toán yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Ngoài câu 62 trang 178, học sinh cũng cần luyện tập các dạng bài tập tương tự để củng cố kiến thức và kỹ năng. Một số dạng bài tập liên quan bao gồm:
Khi giải bài toán về đạo hàm, học sinh cần chú ý các điểm sau:
Để học tập và ôn luyện hiệu quả, học sinh có thể tham khảo các tài liệu sau:
Câu 62 trang 178 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm trong việc giải quyết các bài toán thực tế. Bằng cách nắm vững các kiến thức và phương pháp giải, học sinh có thể tự tin làm bài và đạt kết quả tốt trong môn học.
Hàm số | Đạo hàm |
---|---|
f(x) = xn | f'(x) = nxn-1 |
f(x) = sin(x) | f'(x) = cos(x) |
f(x) = cos(x) | f'(x) = -sin(x) |