Bài toán này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Mùa xuân ở Hội Lim (tỉnh Bắc Ninh) thường có trò chơi đu.
Tìm các thời điểm trong vòng 2 giây đầu tiên mà người chơi đu ở xa vị trí cân bằng nhất.
Lời giải chi tiết:
Người chơi đu ở xa vị trí cân bằng nhất khi \(\cos \left[ {{\pi \over 3}\left( {2t - 1} \right)} \right] = \pm 1\)
Ta có:
\(\eqalign{& \cos \left[ {{\pi \over 3}\left( {2t - 1} \right)} \right] = \pm 1\cr& \Leftrightarrow \sin \left[ {{\pi \over 3}\left( {2t - 1} \right)} \right] = 0 \cr & \Leftrightarrow {\pi \over 3}\left( {2t - 1} \right) = k\pi\cr& \Leftrightarrow t = {1 \over 2}\left( {3k + 1} \right) \cr} \)
Ta cần tìm k nguyên để \(0 ≤ t ≤ 2\)
\(0 \le t \le 2 \Leftrightarrow 0 \le {1 \over 2}\left( {3k + 1} \right) \le 2 \)
\(\Leftrightarrow - {1 \over 3} \le k \le 1 \Leftrightarrow k \in \left\{ {0;1} \right\}\)
Với \(k = 0\) thì \(t = {1 \over 2}.\)
Với \(k = 1\) thì \(t = 2\).
Vậy trong 2 giây đầu tiên, người chơi đu ở xa vị trí cân bằng nhất vào các thời điểm \({1 \over 2}\) giây và 2 giây.
Tìm các thời điểm trong vòng 2 giây đầu tiên mà người chơi đu cách vị trí cân bằng 2 mét (tính chính xác đến
\({1 \over {100}}\) giây).
Lời giải chi tiết:
Người chơi đu cách vị trí cân bằng 2 mét khi \(3\cos \left[ {{\pi \over 3}\left( {2t - 1} \right)} \right] = \pm 2\)
Ta có:
\(\eqalign{& 3\cos \left[ {{\pi \over 3}\left( {2t - 1} \right)} \right] = \pm 2 \cr & \Leftrightarrow {\cos ^2}\left[ {{\pi \over 3}\left( {2t - 1} \right)} \right] = {4 \over 9} \cr & \Leftrightarrow \frac{{1 + \cos \left[ {\frac{{2\pi }}{3}\left( {2t - 1} \right)} \right]}}{2} = \frac{4}{9}\cr& \Leftrightarrow 1 + \cos \left[ {{{2\pi } \over 3}\left( {2t - 1} \right)} \right] = {8 \over 9} \cr & \Leftrightarrow \cos \left[ {{{2\pi } \over 3}\left( {2t - 1} \right)} \right] = - {1 \over 9} \cr & \Leftrightarrow {{2\pi } \over 3}\left( {2t - 1} \right) = \pm \alpha + k2\pi \cr & \Leftrightarrow t = \pm {{3\alpha } \over {4\pi }} + {1 \over 2} + {{3k} \over 2}\cr&\left( {\text{với}\,\cos \alpha = - {1 \over 9}} \right) \cr} \)
Ta tìm k nguyên để \(0 ≤ t ≤ 2\)
- Với \(t = {{3\alpha } \over {4\pi }} + {1 \over 2} + {{3k} \over 2},\) ta có :
\(0 \le t \le 2 \Leftrightarrow - {1 \over 3} - {\alpha \over {2\pi }} \le k \le 1 - {\alpha \over {2\pi }}\)
Với \(\cos \alpha = - {1 \over 9}\) ta chọn \(α ≈ 1,682\)
Khi đó \(– 0,601 < k < 0,732\) suy ra \(k = 0\) và \(t ≈ 0,90\)
- Với \(t = - {{3\alpha } \over {4\pi }} + {1 \over 2} + {{3k} \over 2},\) ta có :
\(0 \le t \le 2 \Leftrightarrow - {1 \over 3} + {\alpha \over {2\pi }} \le k \le 1 + {\alpha \over {2\pi }}\)
Vì \(α ≈ 1,682\) nên \(– 0,066 < k < 1,267\), suy ra \(k \in {\rm{\{ }}0;1\} \)
Với \(k = 0\), ta có \(t ≈ 0,10\); với \(k = 1\), ta có \(t ≈ 1,60\)
Kết luận : Trong khoảng 2 giây đầu tiên, có ba thời điểm mà người chơi đu cách vị trí cân bằng 2 mét, đó là \(t ≈ 0,10\) giây; \(t ≈ 0,90\) giây và \(t ≈ 1,60\) giây.
Câu 37 trang 46 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Dưới đây là lời giải chi tiết và phân tích bài toán này:
Trước khi đi vào giải, chúng ta cần hiểu rõ yêu cầu của đề bài. Thông thường, đề bài sẽ cho một hàm số và yêu cầu:
Giả sử hàm số được cho trong đề bài là: y = f(x) = x3 - 3x2 + 2. Chúng ta sẽ tiến hành giải bài toán theo các bước sau:
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là tập số thực, tức là D = ℝ.
Đạo hàm bậc nhất của hàm số là: y' = f'(x) = 3x2 - 6x.
Để tìm điểm cực trị, ta giải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2.
Ta xét dấu của y' để xác định loại cực trị:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Từ bảng xét dấu, ta thấy:
Đạo hàm bậc hai của hàm số là: y'' = f''(x) = 6x - 6.
Để tìm điểm uốn, ta giải phương trình y'' = 0:
6x - 6 = 0
x = 1
Tại x = 1, đạo hàm bậc hai đổi dấu, do đó x = 1 là điểm uốn. Giá trị của hàm số tại điểm uốn là f(1) = 0.
Dựa vào bảng xét dấu của y' ở trên, ta có:
Dựa vào các thông tin đã tính toán, ta có thể vẽ đồ thị hàm số y = x3 - 3x2 + 2. Đồ thị hàm số sẽ có các đặc điểm sau:
Việc giải Câu 37 trang 46 SGK Đại số và Giải tích 11 Nâng cao đòi hỏi học sinh phải nắm vững kiến thức về đạo hàm và ứng dụng đạo hàm để khảo sát hàm số. Lời giải chi tiết trên cung cấp một hướng dẫn cụ thể để học sinh có thể tự giải bài toán này và hiểu rõ hơn về các khái niệm liên quan.
Hy vọng rằng, với lời giải này, các bạn học sinh sẽ tự tin hơn trong việc học tập và giải quyết các bài toán tương tự.