Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đồ thị hàm số và các phép biến đổi đồ thị để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Xét tính chẵn – lẻ của mỗi hàm số sau :
\(y = \cos \left( {x - {\pi \over 4}} \right)\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& f\left( x \right) = \cos \left( {x - {\pi \over 4}} \right)\cr&f\left( {{\pi \over 4}} \right) = 1,f\left( { - {\pi \over 4}} \right) = 0 \cr & f\left( { - {\pi \over 4}} \right) \ne f\left( {{\pi \over 4}} \right)\cr& \text{và }f\left( { - {\pi \over 4}} \right) \ne - f\left( {{\pi \over 4}} \right) \cr} \)
Nên \(y = \cos \left( {x - {\pi \over 4}} \right)\) không phải là hàm số chẵn cũng không phải là hàm số lẻ.
\(y = \tan \left| x \right|\)
Lời giải chi tiết:
\(f(x) = \tan|x|\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in \mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan |-x| = \tan |x| = f(x)\)
Do đó \(y = \tan |x|\) là hàm số chẵn.
\(y = \tan x - \sin 2x.\)
Lời giải chi tiết:
\(f(x) = \tan x – \sin 2x\).
Tập xác định \(D =\mathbb R \backslash \left\{ {{\pi \over 2} + k\pi ,k \in\mathbb Z} \right\}\)
\(x \in D ⇒ -x \in D\) và \(f(-x) = \tan(-x) – \sin(-2x)\)
\(= -\tan x + \sin 2x = -(\tan x – \sin 2x)\)
\(= -f(x)\)
Do đó \(y = \tan x – \sin 2x\) là hàm số lẻ.
Câu 7 trang 16 SGK Đại số và Giải tích 11 Nâng cao thường xoay quanh việc xác định tính đơn điệu của hàm số, tìm khoảng đồng biến, nghịch biến, và các điểm cực trị. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
(Đề bài cụ thể sẽ được chèn vào đây, ví dụ: Xét hàm số y = x3 - 3x2 + 2. Tìm khoảng đồng biến, nghịch biến và cực trị của hàm số.)
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước tính đạo hàm, xét dấu đạo hàm, xác định khoảng đồng biến, nghịch biến và các điểm cực trị. Ví dụ:)
Bước 1: Tính đạo hàm cấp nhất f'(x)
f'(x) = 3x2 - 6x
Bước 2: Tìm các điểm dừng (f'(x) = 0)
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
Bước 3: Lập bảng biến thiên
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Bước 4: Kết luận
Để củng cố kiến thức và kỹ năng giải các bài tập về khảo sát hàm số, bạn có thể tham khảo các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán khó hơn.
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, bạn đã hiểu rõ cách giải Câu 7 trang 16 SGK Đại số và Giải tích 11 Nâng cao. Chúc bạn học tập tốt!