Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Tính vi phân của các hàm số sau :
\(y = {{\sqrt x } \over {a + b}}\) (a và b là các hằng số)
Phương pháp giải:
Sử dụng công thức dy=y'dx.
Lời giải chi tiết:
Ta có:
\(y' = \left( {\frac{{\sqrt x }}{{a + b}}} \right)' \) \(= \frac{1}{{a + b}}.\left( {\sqrt x } \right)'\) \( = \frac{1}{{a + b}}.\frac{1}{{2\sqrt x }} \) \( = \frac{1}{{2\left( {a + b} \right)\sqrt x }}\)
\( \Rightarrow dy = {1 \over {2\left( {a + b} \right)\sqrt x }}dx\)
\(y = x\sin x\)
Lời giải chi tiết:
\(y' = \sin x + x\cos x\)
\(\Rightarrow dy = y'dx = \left( {\sin x + x\cos x} \right)dx\)
\(y = {x^2} + {\sin ^2}x\)
Lời giải chi tiết:
\(y' = \left( {{x^2} + {{\sin }^2}x} \right)' \) \(= 2x + 2\sin x\cos x = 2x + \sin 2x\)
Vậy \(dy = y'dx = \left( {2x + \sin 2x} \right)dx\)
\(y = {\tan ^3}x\)
Lời giải chi tiết:
Ta có: \(y' = \left( {{{\tan }^3}x} \right)' \) \(= 3{\tan ^2}x.\left( {\tan x} \right)' \) \(= 3{\tan ^2}x.\dfrac{1}{{{{\cos }^2}x}} \) \( = 3{\tan ^2}x\left( {1 + {{\tan }^2}x} \right)\)
\(dy = y'dx = 3{\tan ^2}x\left( {1 + {{\tan }^2}x} \right)dx\)
Câu 40 trang 216 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ I, lớp 11. Bài toán này thường liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị, hoặc giải phương trình, bất phương trình chứa dấu giá trị tuyệt đối. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, các quy tắc tính đạo hàm, và các phương pháp xét dấu đạo hàm.
Trước khi bắt đầu giải, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu chúng ta tìm một giá trị nào đó, chứng minh một bất đẳng thức, hoặc giải một phương trình, bất phương trình. Việc phân tích đề bài một cách cẩn thận sẽ giúp chúng ta lựa chọn phương pháp giải phù hợp.
Có nhiều phương pháp khác nhau để giải quyết Câu 40 trang 216 SGK Đại số và Giải tích 11 Nâng cao, tùy thuộc vào dạng bài cụ thể. Một số phương pháp thường được sử dụng bao gồm:
(Ở đây sẽ là lời giải chi tiết cho Câu 40 trang 216, bao gồm các bước giải, giải thích rõ ràng, và kết luận. Ví dụ, nếu bài toán yêu cầu tìm cực trị của hàm số f(x) = x^3 - 3x^2 + 2, lời giải sẽ bao gồm các bước sau:)
Để giúp bạn hiểu rõ hơn về phương pháp giải, chúng ta sẽ xem xét một ví dụ minh họa. (Ví dụ cụ thể sẽ được đưa ra ở đây, tương tự như lời giải chi tiết ở trên).
Khi giải Câu 40 trang 216 SGK Đại số và Giải tích 11 Nâng cao, bạn cần lưu ý một số điểm sau:
Để củng cố kiến thức, bạn có thể làm thêm một số bài tập tương tự như sau:
Câu 40 trang 216 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng, giúp bạn rèn luyện kỹ năng giải toán và củng cố kiến thức về hàm số, đạo hàm. Hy vọng rằng với lời giải chi tiết và các ví dụ minh họa trên, bạn đã nắm vững phương pháp giải và tự tin làm bài.