Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ, và ứng dụng của vectơ trong hình học phẳng để giải quyết.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và kỹ năng giải bài tập này.
a. Chứng minh rằng hai tứ giác lồi có cặp cạnh tương ứng bằng nhau và một cặp đường chéo tương ứng bằng nhau thì bằng nhau
Chứng minh rằng hai tứ giác lồi có cặp cạnh tương ứng bằng nhau và một cặp đường chéo tương ứng bằng nhau thì bằng nhau
Lời giải chi tiết:
Giả sử hai tứ giác lồi ABCD và A’B’C’D’ có \(AB = A’B’; BC = B’C’; \)\(CD = C’D’, DA = D’A’\) và \(AC = A’C’\)
Khi đó hai tam giác ABC và A’B’C’ bằng nhau nên có phép dời hình F biến ba điểm A, B, C lần lượt thành ba điểm A’, B’, C’
Gọi D” là điểm đối xứng với điểm D’ qua đường thẳng A’C’ thì hai tam giác A’C’D’ và A’C’D” bằng nhau và theo giả thiết, cùng bằng tam giác ACD
Bởi vậy phép F chỉ có thể biến điểm D thành điểm D’ hoặc D” (do phép dời hình bảo toàn độ dài đoạn thẳng)
Vì ABCD là tứ giác lồi nên hai đoạn thẳng AC và BD cắt nhau, A’B’C’D’ cũng là tứ giác lồi nên hai đoạn thẳng A’C’ và B’D’ cắt nhau, và do đó hai đoạn thẳng A’C’ và B’D” không cắt nhau.
Từ đó ta suy ra F biến D thành D’
Vậy F biến tứ giác ABCD thành tứ giác A’B’C’D’ và do đó hai tứ giác đó bằng nhau
Chứng minh rằng hai tứ giác lồi có các cặp cạnh tương ứng bằng nhau và một cặp góc tương ứng bằng nhau thì bằng nhau
Lời giải chi tiết:
Giả sử hai tứ giác ABCD và A’B’C’D’ có \(AB = A’B’, BC = B’C’, \)\(CD = C’D’, DA = D’A’\) và góc ABC bằng góc A’B’C’
Khi đó \(AC = A’C’\) và ta đưa về trường hợp ở câu a)
Hai tứ giác lồi có các cặp cạnh tương ứng bằng nhau thì có bằng nhau hay không?
Lời giải chi tiết:
Có thể không bằng nhau
Hai hình thoi có cạnh bằng nhau nhưng có thể là hai hình không bằng nhau (vì phép dời hình biến góc thành góc bằng nó)
Câu 21 trang 23 SGK Hình học 11 Nâng cao thường liên quan đến việc chứng minh đẳng thức vectơ, tìm mối quan hệ giữa các vectơ, hoặc xác định vị trí tương đối của các điểm trong mặt phẳng dựa trên tọa độ vectơ. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về vectơ, bao gồm:
Trước khi bắt tay vào giải bài toán, điều quan trọng là phải đọc kỹ đề bài, xác định rõ yêu cầu của bài toán và các dữ kiện đã cho. Sau đó, lập kế hoạch giải bài toán bằng cách:
Đề bài: Cho tam giác ABC. Gọi M là trung điểm của BC. Chứng minh rằng overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2.
Lời giải:
Vì M là trung điểm của BC, ta có overrightarrow{BM} =overrightarrow{MC}.
Áp dụng quy tắc cộng vectơ, ta có:
overrightarrow{AB} +overrightarrow{AC} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{MC} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{BM} =overrightarrow{AB} +overrightarrow{AM} +overrightarrow{AM} = 2overrightarrow{AM}
Suy ra overrightarrow{AM} = (overrightarrow{AB} +overrightarrow{AC})/2 (điều phải chứng minh).
Ngoài dạng bài tập chứng minh đẳng thức vectơ như trên, Câu 21 trang 23 SGK Hình học 11 Nâng cao còn có thể xuất hiện các dạng bài tập khác, như:
Để giải quyết các dạng bài tập này, học sinh cần nắm vững các công thức và tính chất của vectơ, đồng thời rèn luyện kỹ năng phân tích bài toán và lập kế hoạch giải quyết.
Để học tốt môn Hình học 11 Nâng cao, đặc biệt là các bài tập về vectơ, bạn nên:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, bạn sẽ tự tin giải quyết Câu 21 trang 23 SGK Hình học 11 Nâng cao và các bài tập tương tự một cách hiệu quả.