Logo Header
  1. Môn Toán
  2. Câu 23 trang 111 SGK Hình học 11 Nâng cao

Câu 23 trang 111 SGK Hình học 11 Nâng cao

Câu 23 trang 111 SGK Hình học 11 Nâng cao là một bài toán quan trọng trong chương trình Hình học 11 Nâng cao.

Bài toán này thường yêu cầu học sinh vận dụng kiến thức về vectơ, các phép toán vectơ, và ứng dụng vào hình học không gian.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và kỹ năng giải toán.

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. a. Chứng minh rằng AC’ vuông góc với hai mặt phẳng (A’BD) và (B’CD’). b. Cắt hình lập phương bởi mặt phẳng trung trực của AC’. Chứng minh thiết diện tạo thành là một lục giác đều. Tính diện tích thiết diện đó.

Đề bài

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a.

a. Chứng minh rằng AC’ vuông góc với hai mặt phẳng (A’BD) và (B’CD’).

b. Cắt hình lập phương bởi mặt phẳng trung trực của AC’. Chứng minh thiết diện tạo thành là một lục giác đều. Tính diện tích thiết diện đó.

Lời giải chi tiết

Câu 23 trang 111 SGK Hình học 11 Nâng cao 1

Câu 23 trang 111 SGK Hình học 11 Nâng cao 2

Cách khác:

Ta có: \(BD \bot AC\) (do \(ABCD\) là hình vuông)

\(BD \bot AA'\) (do \(AA' \bot \left( {ABCD} \right)\))

\( \Rightarrow BD \bot \left( {ACC'A'} \right)\) \( \Rightarrow BD \bot AC'\)

\(\left\{ \begin{array}{l}A'D \bot AD'\\A'D \bot AB\end{array} \right. \Rightarrow A'D \bot \left( {ABC'D'} \right)\)

\( \Rightarrow A'D \bot AC'\)

Ta có: \(\left\{ \begin{array}{l}BD \bot AC'\\A'D \bot AC'\end{array} \right.\) \( \Rightarrow AC' \bot \left( {A'BD} \right)\)

Lại có, \(\left\{ \begin{array}{l}BD//B'D'\\A'B//CD'\\BD,A'B \subset \left( {A'BD} \right)\\B'D',CD' \subset \left( {CB'D'} \right)\end{array} \right.\) \( \Rightarrow \left( {A'BD} \right)//\left( {CB'D'} \right)\)

\( \Rightarrow AC' \bot \left( {CB'D'} \right)\)

Vậy \(AC'\) vuông góc với các mặt phẳng \(\left( {A'BD} \right)\) và \(\left( {CB'D'} \right)\).

b) 

Câu 23 trang 111 SGK Hình học 11 Nâng cao 3

Gọi \(O\) là trung điểm của \(AC'\).

\(\left( P \right)\) là mặt phẳng trung trực của \(AC'\) thì \(\left( P \right)\) đi qua \(O\) và vuông góc với \(AC'\).

Mà \(AC'//\left( {A'BD} \right)\) và \(AC' \bot \left( {CB'D'} \right)\) nên \(\left( P \right)//\left( {A'BD} \right)//\left( {CB'D'} \right)\).

Ta có: \(\left\{ \begin{array}{l}BD \subset \left( {BDD'B'} \right)\\BD//\left( P \right)\\O \in \left( P \right) \cap \left( {BDD'B'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {BDD'B'} \right) = Ot//BD\)

Trong \(\left( {BDD'B'} \right)\), qua \(O\) kẻ đường thẳng \(Ot//BD\) và cắt \(BB',DD'\) lần lượt tại các điểm \(S,P\).

Tương tự,

\(\left\{ \begin{array}{l}A'D \subset \left( {ADD'A'} \right)\\A'D//\left( P \right)\\P \in \left( P \right) \cap \left( {ADD'A'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {ADD'A'} \right) = PQ//A'D\) với \(Q \in A'D\).

\(\left\{ \begin{array}{l}B'D \subset \left( {A'B'C'D'} \right)\\B'D//\left( P \right)\\Q \in \left( P \right) \cap \left( {A'B'C'D'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {A'B'C'D'} \right) = QR//B'D'\) với \(R \in A'B'\).

\(\left\{ \begin{array}{l}CD' \subset \left( {CDD'C'} \right)\\CD'//\left( P \right)\\P \in \left( P \right) \cap \left( {CDD'C'} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {CDD'C'} \right) = PN//CD'\) với \(N \in CD\).

\(\left\{ \begin{array}{l}BD \subset \left( {ABCD} \right)\\BD//\left( P \right)\\N \in \left( P \right) \cap \left( {ABCD} \right)\end{array} \right.\) \( \Rightarrow \left( P \right) \cap \left( {ABCD} \right) = NM//BD\) với \(M \in BC\).

Vậy thiết diện là lục giác \(MNPQRS\).

Dễ thấy, \(O\) là trung điểm của \(AC'\) nên cũng là trung điểm của \(BD'\).

\( \Rightarrow PS//BD\) thì \(P,S\) lần lượt là trung điểm của \(DD',BB'\).

Từ đó các điểm \(M,N,Q,R\) lần lượt là trung điểm của \(BC,CD,D'A',A'B'\).

\(ABCD\) là hình vuông cạnh \(a\) nên \(BD = \sqrt {A{B^2} + A{D^2}} \) \( = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)

\( \Rightarrow MN = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\)

Tương tự \(MN = NP = PQ\) \( = QR = RS = SM = \frac{{a\sqrt 2 }}{2}\).

Do đó, lục giác \(MNPQRS\) là lục giác đều.

Xét \(\Delta MON\) đều cạnh \(OM = ON = MN = \frac{{a\sqrt 2 }}{2}\) nên có diện tích:

\({S_{MON}} = \frac{1}{2}OM.ON.\sin \widehat {MON}\) \( = \frac{1}{2}.\frac{{a\sqrt 2 }}{2}.\frac{{a\sqrt 2 }}{2}.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{8}\)

Vậy \({S_{MNPQRS}} = 6{S_{MON}}\) \( = 6.\frac{{{a^2}\sqrt 3 }}{8} = \frac{{3{a^2}\sqrt 3 }}{4}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Câu 23 trang 111 SGK Hình học 11 Nâng cao – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải Chi Tiết Câu 23 Trang 111 SGK Hình Học 11 Nâng Cao

Câu 23 trang 111 SGK Hình học 11 Nâng cao thường liên quan đến việc xác định mối quan hệ giữa các vectơ trong không gian, tính toán độ dài vectơ, tích vô hướng, và ứng dụng vào việc chứng minh các tính chất hình học.

Phân Tích Đề Bài

Trước khi bắt đầu giải, cần đọc kỹ đề bài, xác định rõ các yếu tố đã cho và yêu cầu của bài toán. Vẽ hình minh họa (nếu cần thiết) để hình dung rõ hơn về bài toán.

Các Kiến Thức Liên Quan

Để giải quyết bài toán này, bạn cần nắm vững các kiến thức sau:

  • Vectơ trong không gian: Định nghĩa, các phép toán cộng, trừ, nhân với một số thực.
  • Tích vô hướng của hai vectơ: Công thức tính, ứng dụng để tính góc giữa hai vectơ, kiểm tra tính vuông góc.
  • Các tính chất của vectơ: Vectơ cùng phương, cùng chiều, ngược chiều, bằng nhau.
  • Ứng dụng của vectơ trong hình học không gian: Chứng minh các tính chất của hình bình hành, hình chữ nhật, hình thoi, hình vuông, hình hộp, hình lăng trụ,...

Lời Giải Chi Tiết

(Phần này sẽ chứa lời giải chi tiết của bài toán, bao gồm các bước giải, giải thích rõ ràng, và kết luận.)

Ví dụ, giả sử đề bài yêu cầu chứng minh một tứ giác là hình bình hành. Bạn có thể sử dụng tính chất của vectơ để chứng minh rằng hai cặp cạnh đối song song hoặc hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Ví Dụ Minh Họa

Ví dụ 1: Cho hình hộp ABCD.A'B'C'D'. Gọi M là trung điểm của cạnh AB. Chứng minh rằng vectơ MM' vuông góc với mặt phẳng (ABCD).

Lời giải:

  1. Gọi N là trung điểm của cạnh CD. Chứng minh rằng AN và BM cắt nhau tại trung điểm I của mỗi đường.
  2. Chứng minh rằng AI = BI = CI = DI.
  3. Suy ra tứ giác ABCD là hình vuông.

Mẹo Giải Toán

  • Luôn vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Sử dụng các tính chất của vectơ một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng.

Bài Tập Tương Tự

Để củng cố kiến thức, bạn có thể giải các bài tập tương tự sau:

  • Bài 1: ...
  • Bài 2: ...
  • Bài 3: ...

Kết Luận

Câu 23 trang 111 SGK Hình học 11 Nâng cao là một bài toán quan trọng, giúp bạn rèn luyện kỹ năng giải toán vectơ và ứng dụng vào hình học không gian. Hy vọng với lời giải chi tiết và các kiến thức liên quan được cung cấp, bạn sẽ tự tin giải quyết bài toán này và các bài toán tương tự.

Bảng Tóm Tắt Công Thức

Công ThứcMô Tả
a.b = |a||b|cos(θ)Tích vô hướng của hai vectơ a và b
|a| = √(x2 + y2 + z2)Độ dài của vectơ a

Tài liệu, đề thi và đáp án Toán 11