Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.
Chứng minh rằng
Đề bài
Chứng minh rằng dãy số \(\displaystyle (u_n)\) với \(\displaystyle {u_n} = {{2n + 3} \over {3n + 2}}\) là một dãy số giảm và bị chặn.
Phương pháp giải - Xem chi tiết
- Xét hiệu \(H = {u_{n + 1}} - {u_n}\), chứng minh \(H<0\).
- Đánh giá \(u_{n}\) bị chặn dưới và bị chặn trên, tức là chỉ ra tồn tại các số thực \(m,M\) sao cho \(m \le {u_n} \le M\).
Lời giải chi tiết
Ta có:
\(\displaystyle \eqalign{& {u_n} = {{2n + 3} \over {3n + 2}} = {{{2 \over 3}\left( {3n + 2} \right) + {5 \over 3}} \over {3n + 2}} \cr&= {2 \over 3} + {5 \over {3\left( {3n + 2} \right)}} \cr } \)
\(\begin{array}{l}u_{n+1}-u_n\\= \left( {\frac{2}{3} + \frac{5}{{3\left[ {3\left( {n + 1} \right) + 2} \right]}}} \right) - \left( {\frac{2}{3} + \frac{5}{{3\left( {3n + 2} \right)}}} \right)\\ = \frac{2}{3} + \frac{5}{{3\left( {3n + 5} \right)}} - \frac{2}{3} - \frac{5}{{3\left( {3n + 2} \right)}}\\ = \frac{5}{{3\left( {3n + 5} \right)}} - \frac{5}{{3\left( {3n + 2} \right)}}\\ = \frac{{5\left( {3n + 2} \right) - 5\left( {3n + 5} \right)}}{{3\left( {3n + 5} \right)\left( {3n + 2} \right)}}\\ = \frac{{ - 15}}{{3\left( {3n + 5} \right)\left( {3n + 2} \right)}}\\ = - \frac{5}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}} < 0,\forall n \in {N^*}\end{array}\)
\(\displaystyle ⇒ (u_n)\) là dãy số giảm
Ta lại có:
+) \(\frac{{2n + 3}}{{3n + 2}} > 0,\forall n \in {N^*}\)
+) \(2n + 3 < 3n + 2,\forall n \in {N^*}\) vì \(2n + 3 - 3n - 2 = - n + 1 \le 0,\)\(\forall n \in {N^*}\)
Do đó \(\displaystyle 0 < {{2n + 3} \over {3n + 2}} \le 1 \;\forall n \in\mathbb N^*\)
Vậy \(\displaystyle (u_n)\) là dãy số giảm và bị chặn.
Cách khác:
\(\begin{array}{l}{u_n} = \frac{{2n + 3}}{{3n + 2}}\\ \Rightarrow {u_{n + 1}} - {u_n}\\ = \frac{{2\left( {n + 1} \right) + 3}}{{3\left( {n + 1} \right) + 2}} - \frac{{2n + 3}}{{3n + 2}}\\ = \frac{{2n + 5}}{{3n + 5}} - \frac{{2n + 3}}{{3n + 2}}\\ = \frac{{\left( {2n + 5} \right)\left( {3n + 2} \right) - \left( {2n + 3} \right)\left( {3n + 5} \right)}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}}\\ = \frac{{6{n^2} + 19n + 10 - 6{n^2} - 19n - 15}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}}\\ = \frac{{ - 5}}{{\left( {3n + 5} \right)\left( {3n + 2} \right)}} < 0,\forall n \in {N^*}\end{array}\)
Do đó \( (u_n)\) là dãy số giảm.
Câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học lớp 11, tập trung vào việc ứng dụng đạo hàm để khảo sát hàm số. Bài toán này thường yêu cầu học sinh xác định các điểm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Việc nắm vững kiến thức về đạo hàm và các quy tắc tính đạo hàm là yếu tố then chốt để giải quyết bài toán này một cách hiệu quả.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và các thông tin đã cho. Thông thường, đề bài sẽ cung cấp một hàm số cụ thể và yêu cầu chúng ta thực hiện các bước khảo sát hàm số như sau:
Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số được cho là: f(x) = x3 - 3x2 + 2
Hàm số f(x) = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là tập số thực, tức là D = ℝ.
Đạo hàm bậc nhất của hàm số là: f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, chúng ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, phương trình có hai nghiệm là x = 0 và x = 2. Đây là các điểm cực trị của hàm số.
Chúng ta xét dấu của đạo hàm bậc nhất trên các khoảng xác định:
Dựa vào các thông tin đã phân tích, chúng ta có thể vẽ đồ thị hàm số f(x) = x3 - 3x2 + 2. Đồ thị hàm số sẽ có các điểm cực trị tại x = 0 và x = 2, và hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).
Khi giải các bài toán về khảo sát hàm số, cần lưu ý một số điểm sau:
Kiến thức về khảo sát hàm số có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau, như kinh tế, kỹ thuật, vật lý,... Ví dụ, trong kinh tế, chúng ta có thể sử dụng kiến thức này để tối ưu hóa lợi nhuận, chi phí,... Trong kỹ thuật, chúng ta có thể sử dụng kiến thức này để thiết kế các hệ thống, máy móc,...
Câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán về khảo sát hàm số. Hy vọng với lời giải chi tiết và các lưu ý quan trọng trên, các bạn học sinh có thể tự tin giải quyết bài toán này một cách hiệu quả.