Logo Header
  1. Môn Toán
  2. Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao

Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao

Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng trong chương trình học.

Bài tập này yêu cầu học sinh vận dụng kiến thức về hàm số, đạo hàm để giải quyết các vấn đề thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài.

Trong không gian cho tập hợp gồm 9 điểm trong đó không có 4 điểm nào đồng phẳng. Hỏi có thể lập được bao nhiêu tứ diện với đỉnh thuộc tập hợp đã cho ?

Đề bài

Trong không gian cho tập hợp gồm 9 điểm trong đó không có 4 điểm nào đồng phẳng. Hỏi có thể lập được bao nhiêu tứ diện với đỉnh thuộc tập hợp đã cho ?

Lời giải chi tiết

Cứ 4 điểm không đồng phẳng xác định 1 tứ diện nhận 4 điểm đó làm đỉnh. Theo giả thiết 9 điểm đã cho không có 4 điểm nào đồng phẳng nên số các tứ diện chính là số tổ hợp chập 4 của 9.

Vậy có \(C_9^4 = 126\) tứ diện

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán học. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Giải Chi Tiết Câu 58 Trang 93 SGK Đại số và Giải tích 11 Nâng cao

Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao thuộc chương trình học kỳ I, lớp 11. Bài toán này thường liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị, hoặc giải phương trình, bất phương trình chứa đạo hàm. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, các quy tắc tính đạo hàm, và các phương pháp xét tính đơn điệu của hàm số.

Phân Tích Đề Bài

Trước khi bắt đầu giải, chúng ta cần đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, đề bài sẽ yêu cầu chúng ta:

  • Tìm đạo hàm của hàm số.
  • Xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
  • Tìm cực trị của hàm số (cực đại, cực tiểu).
  • Giải phương trình hoặc bất phương trình chứa đạo hàm.

Phương Pháp Giải

Để giải Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao, chúng ta có thể áp dụng các phương pháp sau:

  1. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số.
  2. Xét dấu đạo hàm: Tìm các điểm mà đạo hàm bằng 0 hoặc không xác định. Chia trục số thành các khoảng và xét dấu đạo hàm trên mỗi khoảng.
  3. Kết luận về tính đơn điệu: Dựa vào dấu của đạo hàm để kết luận về tính đơn điệu của hàm số trên mỗi khoảng.
  4. Tìm cực trị: Sử dụng điều kiện cần và đủ để tìm cực trị của hàm số.
  5. Giải phương trình/bất phương trình: Áp dụng các phương pháp giải phương trình hoặc bất phương trình để tìm nghiệm.

Ví Dụ Minh Họa

Giả sử đề bài yêu cầu chúng ta xét tính đơn điệu của hàm số f(x) = x3 - 3x2 + 2.

Bước 1: Tính đạo hàm

f'(x) = 3x2 - 6x

Bước 2: Xét dấu đạo hàm

f'(x) = 0 khi 3x2 - 6x = 0 => x(x - 2) = 0 => x = 0 hoặc x = 2

Xét các khoảng:

  • x < 0: f'(x) > 0 => Hàm số đồng biến
  • 0 < x < 2: f'(x) < 0 => Hàm số nghịch biến
  • x > 2: f'(x) > 0 => Hàm số đồng biến

Bước 3: Kết luận

Hàm số f(x) = x3 - 3x2 + 2 đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).

Lưu Ý Quan Trọng

Khi giải các bài tập về đạo hàm, cần chú ý các điểm sau:

  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Xét dấu đạo hàm một cách cẩn thận.
  • Kết luận về tính đơn điệu và cực trị của hàm số một cách chính xác.

Bài Tập Tương Tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự trong SGK và sách bài tập. Ngoài ra, bạn có thể tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.

Tổng Kết

Câu 58 trang 93 SGK Đại số và Giải tích 11 Nâng cao là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải quyết các bài toán về đạo hàm. Bằng cách nắm vững kiến thức cơ bản và áp dụng các phương pháp giải phù hợp, bạn có thể tự tin giải quyết bài toán này một cách hiệu quả.

Khái niệmGiải thích
Đạo hàmTốc độ thay đổi tức thời của hàm số.
Tính đơn điệuTính chất tăng hoặc giảm của hàm số.
Cực trịĐiểm mà hàm số đạt giá trị lớn nhất hoặc nhỏ nhất trong một khoảng nào đó.

Tài liệu, đề thi và đáp án Toán 11