Bài tập 10 trang 57 thuộc chương trình Toán 7 tập 2, tập trung vào việc rèn luyện kỹ năng giải toán về các phép tính với số hữu tỉ. Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải, đáp án, đồng thời cung cấp các phương pháp giải toán hiệu quả, giúp học sinh học tập tốt hơn.
Giải bài tập Giải mật mã:
Đề bài
Giải mật mã:
A | B | C | D | E | F | G | H | I | J | K | L | M |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
Trong các giải thưởng Nobel không có giải thưởng dành cho Toán học. Vì vậy người ta đã tổ chức một giải thưởng khác dành cho Toán học. Các em hãy tính giá trị của các biểu thức sau để biết giải thưởng Toán học được nhắc đến ở đây là giải thưởng nào ?
\(2{x^2} - 2\) tại x = 2.
\(\left| {3{x^2} - 5{x^2} - 1} \right|\) tại x = -1
\(\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 32\) tại x = 4.
\(1000{x^3} + 18\) tại x = 0,1.
(x + 1)(x + 2) tại x = 2.
\({x^4} + {x^3} + {x^2} + x + 4\) tại x = -1.
Tiếp theo, tìm các chữ cái tương ứng với sáu giá trị vừa nhận được. Sắp xếp các chữ cái đó, em sẽ tìm được tên của giải thưởng Toán học phải tìm.
Gợi ý : Một nhà toán học trẻ Việt Nam đã đạt được giải thưởng này.
Lời giải chi tiết
Thay x = 2 vào biểu thức 2x2 – 2 ta có
2.22 – 2 = 6
Vậy giá trị của biểu thức 2x2 – 2 tại x = 2 là 6. Tương ứng ta nhận được chữ F.
• Tại x = -1, ta có: \(\left| {3{x^2} - 5{x^2} - 1} \right| = \left| {3{{( - 1)}^2} - 5{{( - 1)}^2} - 1} \right| = 9\)
Tương ứng ta nhận được chữ I
• Tại x = 4, ta có: \(\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 32 = (4 - 3)({4^2} + 3.4 + 9) - 32 = 5\)
Tương ứng ta nhận được chữ E
• Tại x = 0,1, ta có: \(1000{x^3} + 18 = 1000.0,{1^3} + 18 = 19\).
Tương ứng ta nhận được chữ S
• Tại x = 2, ta có:
(x + 1)(x + 2) = (2 + 1)(2 + 2) = 12.
Tương ứng ta nhận được chữ L
• Tại x = -1, ta có: \({x^4} + {x^3} + {x^2} + x + 4 = {( - 1)^4} + {( - 1)^3} + {( - 1)^2} + ( - 1) + 4 = 4\)
Tương ứng ta nhận được chữ D
Các chữ cái nhận được là F, I, E, S, L, D.
Sắp xếp các chữ cái, ta tìm đượctên của giải thưởng toán học phải tìm là FIELDS.
Bài tập 10 trang 57 Toán 7 tập 2 là một phần quan trọng trong chương trình học Toán 7, giúp học sinh củng cố kiến thức về các phép tính với số hữu tỉ, đặc biệt là phép cộng, trừ, nhân, chia số hữu tỉ. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các quy tắc và tính chất cơ bản của các phép toán này.
Bài tập 10 thường bao gồm các dạng bài tập sau:
Để giải bài tập 10 trang 57 Toán 7 tập 2, học sinh có thể áp dụng các bước sau:
Ví dụ 1: Tính giá trị của biểu thức sau:
(1/2) + (2/3) - (1/4)
Giải:
Để tính giá trị của biểu thức này, ta cần tìm mẫu số chung của các phân số. Mẫu số chung nhỏ nhất của 2, 3 và 4 là 12. Do đó, ta quy đồng các phân số như sau:
(1/2) = (6/12)
(2/3) = (8/12)
(1/4) = (3/12)
Thay các phân số đã quy đồng vào biểu thức ban đầu, ta có:
(6/12) + (8/12) - (3/12) = (6 + 8 - 3)/12 = 11/12
Vậy, giá trị của biểu thức là 11/12.
Ví dụ 2: Tìm x trong phương trình sau:
x + (1/3) = (5/6)
Giải:
Để tìm x, ta cần chuyển (1/3) sang vế phải của phương trình:
x = (5/6) - (1/3)
Quy đồng mẫu số của các phân số, ta có:
(1/3) = (2/6)
Thay phân số đã quy đồng vào phương trình, ta có:
x = (5/6) - (2/6) = (5 - 2)/6 = 3/6 = 1/2
Vậy, x = 1/2.
Để học tập và ôn luyện Toán 7 hiệu quả, học sinh có thể tham khảo các tài liệu sau:
Bài tập 10 trang 57 Toán 7 tập 2 là một bài tập quan trọng giúp học sinh củng cố kiến thức về các phép tính với số hữu tỉ. Bằng cách nắm vững các quy tắc và tính chất cơ bản, áp dụng các bước giải bài tập một cách khoa học và sử dụng các tài liệu tham khảo hữu ích, học sinh có thể tự tin giải quyết bài tập này một cách hiệu quả.