Bài 1.40 trang 27 SGK Toán 8 tập 1 thuộc chương 1: Số hữu tỉ của bộ sách Kết nối tri thức. Bài tập này yêu cầu học sinh vận dụng kiến thức về số hữu tỉ, các phép toán trên số hữu tỉ để giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Gọi T là tổng, H là hiệu của hai đa thức (3{x^2}y - 2x{y^2} + xy) và ( - 2{x^2}y + 3x{y^2} + 1). Khi đó: A. (T = {x^2}y - x{y^2} + xy + 1) và (H = 5{x^2}y - 5x{y^2} + xy - 1). B. (T = {x^2}y + x{y^2} + xy + 1) và (H = 5{x^2}y - 5x{y^2} + xy - 1) C. (T = {x^2}y - x{y^2} + xy + 1) và (H = 5{x^2}y - 5x{y^2} - xy - 1) D. (T = {x^2}y - x{y^2} + xy + 1) và (H = 5{x^2}y + 5x{y^2} + xy - 1)
Đề bài
Gọi T là tổng, H là hiệu của hai đa thức \(3{x^2}y - 2x{y^2} + xy\) và \( - 2{x^2}y + 3x{y^2} + 1\). Khi đó:A. \(T = {x^2}y - x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\).B. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} + xy - 1\)C. \(T = {x^2}y + x{y^2} + xy + 1\) và \(H = 5{x^2}y - 5x{y^2} - xy - 1\)D. \(T = {x^2}y + x{y^2} + xy - 1\) và \(H = 5{x^2}y + 5x{y^2} + xy - 1\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu (+) (hoặc dấu (-)) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.
Lời giải chi tiết
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
Bài 1.40 trang 27 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về số hữu tỉ và các phép toán cơ bản. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm sau:
Đề bài: (Đề bài đầy đủ của bài 1.40 sẽ được chèn vào đây. Ví dụ: Tính: a) 1/2 + 1/3; b) 2/5 - 1/4; c) 3/7 * 2/9; d) 4/5 : 1/2)
Để cộng hai phân số, ta cần quy đồng mẫu số. Mẫu số chung nhỏ nhất của 2 và 3 là 6. Ta có:
1/2 = 3/6
1/3 = 2/6
Vậy, 1/2 + 1/3 = 3/6 + 2/6 = 5/6
Tương tự, ta quy đồng mẫu số. Mẫu số chung nhỏ nhất của 5 và 4 là 20. Ta có:
2/5 = 8/20
1/4 = 5/20
Vậy, 2/5 - 1/4 = 8/20 - 5/20 = 3/20
Để nhân hai phân số, ta nhân tử số với tử số và mẫu số với mẫu số.
3/7 * 2/9 = (3 * 2) / (7 * 9) = 6/63 = 2/21 (rút gọn)
Để chia hai phân số, ta nhân phân số thứ nhất với nghịch đảo của phân số thứ hai.
4/5 : 1/2 = 4/5 * 2/1 = 8/5
Ngoài bài 1.40, học sinh có thể gặp các dạng bài tập tương tự như:
Để giải các bài tập này, học sinh cần:
Để củng cố kiến thức, các em học sinh có thể tự giải các bài tập sau:
Bài 1.40 trang 27 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh nắm vững kiến thức về số hữu tỉ và các phép toán cơ bản. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ giải bài tập này một cách dễ dàng và hiệu quả.