Bài 4.15 trang 88 SGK Toán 8 tập 1 thuộc chương 4: Các tứ giác đặc biệt. Bài tập này yêu cầu học sinh vận dụng kiến thức về hình thang cân, tính chất đường trung bình của hình thang để giải quyết. Giaitoan.edu.vn sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 8, Toán 7, Toán 6, Toán 9, Toán 10, Toán 11, Toán 12.
Cho tam giác ABC,
Đề bài
Cho tam giác ABC, phân giác AD (D ∈ BC). Đường thẳng qua D song song với AB cắt AC tại E. Chứng minh rằng \(\dfrac{{AC}}{{AB}} = \dfrac{{EC}}{{E{\rm{A}}}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
AD là tia phân giác của \(\widehat {BAC}\), áp dụng tính chất tia phân giác ta có được tỉ lệ thức.
DE // AB, áp dụng định lí Thalès vào tam giác ABC, ta có tỉ lệ thức.
Từ đó suy ra đpcm.
Lời giải chi tiết
Theo đề bài, AD là tia phân giác của \(\widehat {BAC}\), áp dụng tính chất đường phân giác vào tam giác ABC, ta có: \(\dfrac{{AC}}{{AB}} = \dfrac{{DC}}{{DB}}\) (1)
Đường thẳng qua D song song với AB cắt AC tại E hay DE // AB, áp dụng định lí Thalès vào tam giác ABC, ta có: \(\dfrac{{DC}}{{DB}} = \dfrac{{EC}}{{E{\rm{A}}}}\) (2)
Từ (1) và (2) suy ra \(\dfrac{{AC}}{{AB}} = \dfrac{{EC}}{{E{\rm{A}}}}\) (đpcm).
Bài 4.15 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình thang cân và đường trung bình của hình thang. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và tính chất sau:
Trước khi bắt tay vào giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho. Sau đó, phân tích đề bài để tìm ra mối liên hệ giữa các yếu tố và lựa chọn phương pháp giải phù hợp. Thông thường, để giải bài tập về hình thang cân, học sinh có thể sử dụng các phương pháp sau:
(Nội dung lời giải chi tiết bài tập 4.15 sẽ được trình bày tại đây, bao gồm các bước giải, hình vẽ minh họa và giải thích rõ ràng. Ví dụ:)
Đề bài: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao của hình thang.
Lời giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là đường cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Xét tam giác vuông ADH, ta có: AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75.
Suy ra, AH = √29.75 ≈ 5.45cm.
Vậy, độ dài đường cao của hình thang là khoảng 5.45cm.
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Một số bài tập gợi ý:
Bài 4.15 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hình thang cân và đường trung bình của hình thang. Bằng cách nắm vững các kiến thức và kỹ năng đã được trình bày trong bài viết này, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn hy vọng rằng bài viết này đã cung cấp cho các em những thông tin hữu ích và giúp các em học tập tốt hơn. Chúc các em thành công!