Bài học này cung cấp lý thuyết cơ bản về kết quả có thể và kết quả thuận lợi, một phần quan trọng trong chương trình Toán 8 - Kết nối tri thức. Chúng ta sẽ cùng tìm hiểu cách xác định các kết quả có thể xảy ra trong một tình huống và làm thế nào để phân biệt kết quả thuận lợi với các kết quả khác.
Nắm vững kiến thức này là nền tảng để hiểu sâu hơn về xác suất trong các bài toán thực tế và các ứng dụng trong cuộc sống.
Kết quả có thể là gì?
1. Kết quả có thể của hành động, thực nghiệm
Kết quả có thể là tất cả các kết quả có thể xảy ra của hành động, thực nghiệm trong các trường hợp có thể xác định được.
2. Kết quả thuận lợi cho một biến cố
Xét một biến cố E, mà E có xảy ra hay không xảy ra tùy thuộc vào kết quả của hành động, thực nghiệm T.
Một kết quả có thể của T để biến cố E xảy ra được gọi là kết quả thuận lợi cho biến cố E.
Ví dụ: Gieo một con xúc xắc.
a) Các kết quả có thể của hành động trên là 1, 2, 3, 4, 5, 6 chấm. Có 6 kết quả có thể.
b) Biến cố E: “Gieo được số chấm lẻ” xảy ra khi gieo được các số lẻ. Do đó các kết quả thuận lợi cho biến cố E là 1, 3, 5.
Biến cố F: “Gieo được số chấm nhỏ hơn 5” xảy ra khi gieo được các số nhỏ hơn 5. Do đó các kết quả thuận lợi cho biến cố F là 1, 2, 3, 4.
Trong chương trình Toán 8, chương Kết nối tri thức, kiến thức về kết quả có thể và kết quả thuận lợi đóng vai trò quan trọng, là bước đệm để học sinh làm quen với khái niệm xác suất thống kê. Bài viết này sẽ trình bày chi tiết lý thuyết, ví dụ minh họa và bài tập áp dụng để giúp học sinh nắm vững kiến thức này.
Kết quả có thể của một sự kiện là tất cả các kết quả mà sự kiện đó có thể xảy ra. Để hiểu rõ hơn, ta xét một số ví dụ:
Như vậy, kết quả có thể là tập hợp tất cả các khả năng có thể xảy ra trong một thí nghiệm hoặc sự kiện.
Kết quả thuận lợi của một sự kiện là kết quả mà ta quan tâm hoặc mong muốn xảy ra. Nó là một tập con của tập hợp tất cả các kết quả có thể.
Kết quả thuận lợi phụ thuộc vào mục tiêu hoặc điều kiện mà ta đặt ra.
Sự khác biệt cơ bản giữa kết quả có thể và kết quả thuận lợi là:
Đặc điểm | Kết quả có thể | Kết quả thuận lợi |
---|---|---|
Định nghĩa | Tất cả các kết quả có thể xảy ra | Kết quả mà ta quan tâm hoặc mong muốn |
Phạm vi | Rộng hơn | Hẹp hơn (là một tập con của kết quả có thể) |
Tính chất | Khách quan | Chủ quan (phụ thuộc vào mục tiêu) |
Lý thuyết này có ứng dụng rộng rãi trong nhiều lĩnh vực, đặc biệt là trong:
Hiểu rõ về kết quả có thể và kết quả thuận lợi là nền tảng quan trọng để học tập và ứng dụng trong nhiều lĩnh vực của cuộc sống. Việc nắm vững lý thuyết và thực hành các bài tập sẽ giúp học sinh tự tin hơn trong việc giải quyết các bài toán liên quan đến xác suất và thống kê.