Bài 6.21 trang 19 SGK Toán 8 tập 2 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng áp dụng các định lý về hình thang cân vào giải quyết các bài toán thực tế.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 6.21 này, giúp các em học sinh nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Thực hiện các phép tính sau:
Đề bài
Thực hiện các phép tính sau:
a) \(\frac{{5 - 3{\rm{x}}}}{{x + 1}} - \frac{{ - 2 + 5{\rm{x}}}}{{x + 1}}\)
b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}}\)
c) \(\frac{3}{{x + 1}} - \frac{{2 + 3{\rm{x}}}}{{{x^3} + 1}}\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Thực hiện theo quy tắc trừ hai phân thức
Lời giải chi tiết
a) \(\frac{{5 - 3x}}{{x + 1}} - \frac{{ - 2 + 5x}}{{x + 1}} \) \( = \frac{{5 - 3{\rm{x - }}\left( { - 2 + 5x} \right)}}{{x + 1}} \) \( = \frac{{5 - 3x + 2 - 5x}}{{x + 1}} \) \( = \frac{{7 - 8x}}{{x + 1}}\)
b) \(\frac{x}{{x - y}} - \frac{y}{{x + y}} \) \( = \frac{{x\left( {x + y} \right) - y\left( {x - y} \right)}}{{\left( {x - y} \right)\left( {x + y} \right)}} \) \( = \frac{{{x^2} + xy - xy + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}} \) \( = \frac{{{x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}\)
c) \(\frac{3}{{x + 1}} - \frac{{2 + 3x}}{{{x^3} + 1}} \) \( = \frac{3}{{x + 1}} - \frac{{2 + 3x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \( = \frac{{3\left( {{x^2} - x + 1} \right) - 2 - 3x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \( = \frac{{3{x^2} - 3x + 3 - 2 - 3x}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \) \( = \frac{{3{x^2} - 6x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)
Bài 6.21 yêu cầu chúng ta chứng minh một tính chất quan trọng của hình thang cân. Để hiểu rõ hơn về cách giải bài tập này, chúng ta cần nắm vững các kiến thức cơ bản về hình thang cân, bao gồm định nghĩa, các tính chất và định lý liên quan.
Cho hình thang cân ABCD (AB // CD). Gọi E là giao điểm của AD và BC. Chứng minh rằng EA = EB.
Chứng minh:
Bài toán này yêu cầu học sinh vận dụng kiến thức về hình thang cân và các tam giác đồng dạng để chứng minh một tính chất quan trọng. Việc hiểu rõ các tính chất của hình thang cân là chìa khóa để giải quyết bài toán này một cách hiệu quả.
Ngoài ra, bài toán này cũng có thể được mở rộng bằng cách yêu cầu học sinh chứng minh các tính chất khác của hình thang cân, hoặc áp dụng các tính chất này vào giải quyết các bài toán thực tế.
Để củng cố kiến thức về hình thang cân, các em có thể làm thêm các bài tập sau:
Bài 6.21 trang 19 SGK Toán 8 tập 2 - Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng chứng minh hình học. Hy vọng với lời giải chi tiết và dễ hiểu trên đây, các em học sinh sẽ nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!