Giaitoan.edu.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 4 trang 18, 19 sách giáo khoa Toán 8 tập 2 chương trình Kết nối tri thức. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi cung cấp đáp án đầy đủ, kèm theo các bước giải chi tiết, giúp các em học sinh có thể tự học tại nhà hoặc ôn tập kiến thức một cách hiệu quả.
Rút gọn biểu thức
Video hướng dẫn giải
Chú Đức lái ô tô từ Hà Nội về quê. Từ nhà chú đến đường cao tốc dài khoảng 20km, xe chạy trong thành phố với vận tốc x(km/h) (x>0). Trên 50km đường cao tốc, xe tăng vận tốc thêm 55km/h. Ra khỏi cao tốc, xe còn phải chạy thêm 15 phút thì về đến quê
a) Viết các phân thức biểu thị thời gian xe chạy trong thành phố và thời gian xe chạy trên đường cao tốc
b) Viết phân thức biểu thị tổng thời gian chú Đức đi từ Hà Nội về quê
Phương pháp giải:
Viết phân thức biểu thị theo yêu cầu của đề bài: Thời gian bằng quãng đường chia cho vận tốc
Lời giải chi tiết:
a) Phân thức biểu thị thời gian xe chạy trong thành phố: \({t_1} = \frac{{20}}{x}\) (giờ)
Phân thức biểu thị thời gian xe chạy trên đường cao tốc: \({t_2} = \frac{{50}}{{x + 55}}\) (giờ)
b)Phân thức biểu thị tổng thời gian chú Đức đi từ Hà Nội về quê:
\(\begin{array}{l}{t_1} + {t_2} + \frac{1}{4}\\ = \frac{{20}}{x} + \frac{{50}}{{x + 55}} + \frac{1}{4}\\ = \frac{{80\left( {x + 55} \right) + 200{\rm{x}} + x\left( {x + 55} \right)}}{{4{\rm{x}}\left( {x + 55} \right)}} = \frac{{{x^2} + 335{\rm{x}} + 4400}}{{4{\rm{x}}\left( {x + 55} \right)}}\end{array}\)
Video hướng dẫn giải
Đề bài đưa ra: hãy rút gọn biểu thức:
\(P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\)
Vuông: Không cần tính toán, em thấy ngay kết quả P = 0
Tròn: Làm thế nào mà Vuông thấy ngay được kết quả thế nhỉ?
Phương pháp giải:
Thực hiện theo quy tắc cộng, trừ các phân thức đại số
Lời giải chi tiết:
\(\begin{array}{l}P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\\P = \frac{x}{{x + 1}} - \left[ {\frac{1}{{x - 1}} + \frac{x}{{x + 1}} - \frac{1}{{x - 1}}} \right]\\P = \frac{x}{{x + 1}} - \frac{x}{{x + 1}} = 0\end{array}\)
Vì vuông đã sử dụng phép cộng, phép trừ phân thức đại số.
Video hướng dẫn giải
Rút gọn biểu thức: \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\)
Phương pháp giải:
Nhóm các số có cùng mẫu để thực hiện phép tính
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\\P = \left( {\frac{1}{x} - \frac{1}{x}} \right) + \left( {\frac{1}{y} - \frac{1}{y}} \right) + \frac{1}{z} = 0 + 0 + \frac{1}{z} = \frac{1}{z}\end{array}\)
Video hướng dẫn giải
Rút gọn biểu thức: \(P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\)
Phương pháp giải:
Nhóm các số có cùng mẫu để thực hiện phép tính
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}P = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x} - \frac{1}{y}\\P = \left( {\frac{1}{x} - \frac{1}{x}} \right) + \left( {\frac{1}{y} - \frac{1}{y}} \right) + \frac{1}{z} = 0 + 0 + \frac{1}{z} = \frac{1}{z}\end{array}\)
Video hướng dẫn giải
Đề bài đưa ra: hãy rút gọn biểu thức:
\(P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\)
Vuông: Không cần tính toán, em thấy ngay kết quả P = 0
Tròn: Làm thế nào mà Vuông thấy ngay được kết quả thế nhỉ?
Phương pháp giải:
Thực hiện theo quy tắc cộng, trừ các phân thức đại số
Lời giải chi tiết:
\(\begin{array}{l}P = \frac{x}{{x + 1}} - \left[ {\left( {\frac{1}{{x - 1}} + \frac{x}{{x + 1}}} \right) - \frac{1}{{x - 1}}} \right]\\P = \frac{x}{{x + 1}} - \left[ {\frac{1}{{x - 1}} + \frac{x}{{x + 1}} - \frac{1}{{x - 1}}} \right]\\P = \frac{x}{{x + 1}} - \frac{x}{{x + 1}} = 0\end{array}\)
Vì vuông đã sử dụng phép cộng, phép trừ phân thức đại số.
Video hướng dẫn giải
Chú Đức lái ô tô từ Hà Nội về quê. Từ nhà chú đến đường cao tốc dài khoảng 20km, xe chạy trong thành phố với vận tốc x(km/h) (x>0). Trên 50km đường cao tốc, xe tăng vận tốc thêm 55km/h. Ra khỏi cao tốc, xe còn phải chạy thêm 15 phút thì về đến quê
a) Viết các phân thức biểu thị thời gian xe chạy trong thành phố và thời gian xe chạy trên đường cao tốc
b) Viết phân thức biểu thị tổng thời gian chú Đức đi từ Hà Nội về quê
Phương pháp giải:
Viết phân thức biểu thị theo yêu cầu của đề bài: Thời gian bằng quãng đường chia cho vận tốc
Lời giải chi tiết:
a) Phân thức biểu thị thời gian xe chạy trong thành phố: \({t_1} = \frac{{20}}{x}\) (giờ)
Phân thức biểu thị thời gian xe chạy trên đường cao tốc: \({t_2} = \frac{{50}}{{x + 55}}\) (giờ)
b)Phân thức biểu thị tổng thời gian chú Đức đi từ Hà Nội về quê:
\(\begin{array}{l}{t_1} + {t_2} + \frac{1}{4}\\ = \frac{{20}}{x} + \frac{{50}}{{x + 55}} + \frac{1}{4}\\ = \frac{{80\left( {x + 55} \right) + 200{\rm{x}} + x\left( {x + 55} \right)}}{{4{\rm{x}}\left( {x + 55} \right)}} = \frac{{{x^2} + 335{\rm{x}} + 4400}}{{4{\rm{x}}\left( {x + 55} \right)}}\end{array}\)
Mục 4 trong SGK Toán 8 tập 2 Kết nối tri thức thường xoay quanh các kiến thức về hình học, cụ thể là các định lý và tính chất liên quan đến tứ giác. Việc nắm vững các kiến thức này là nền tảng quan trọng để giải quyết các bài tập phức tạp hơn trong chương trình học.
Mục 4 thường bao gồm các nội dung sau:
Các bài tập trong mục 4 thường yêu cầu học sinh:
Để giải các bài tập trong mục 4, học sinh cần:
Bài tập: Cho tứ giác ABCD có góc A = 80 độ, góc B = 100 độ, góc C = 110 độ. Tính góc D.
Giải:
Áp dụng định lý về tổng các góc trong một tứ giác, ta có:
Góc D = 360 độ - (góc A + góc B + góc C)
Góc D = 360 độ - (80 độ + 100 độ + 110 độ)
Góc D = 360 độ - 290 độ
Góc D = 70 độ
Để học tốt môn Toán 8, đặc biệt là phần hình học, học sinh nên:
Học sinh có thể tham khảo thêm các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, các em học sinh sẽ tự tin hơn trong việc giải các bài tập trong mục 4 trang 18, 19 SGK Toán 8 tập 2 - Kết nối tri thức. Chúc các em học tập tốt!