Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 8 tập 2 - Kết nối tri thức. Mục 2 trang 16 là một phần quan trọng trong chương trình học, đòi hỏi học sinh phải nắm vững kiến thức về các định lý và tính chất đã học.
Chúng tôi hiểu rằng việc tự giải bài tập đôi khi gặp khó khăn, vì vậy đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn bộ giải chi tiết, giúp bạn hiểu rõ từng bước giải và áp dụng vào các bài tập tương tự.
Quy đồng mẫu hai phân thức
Video hướng dẫn giải
Tính tổng: \(\frac{5}{{2{{{x}}^2}\left( {6{{x}} + y} \right)}} + \frac{3}{{5{{x}}y\left( {6{{x}} + y} \right)}}\)
Phương pháp giải:
Áp dụng quy tắc cộng hai phân thức khác mẫu.
Lời giải chi tiết:
Ta có: \(\frac{5}{{2{{{x}}^2}\left( {6{{x}} + y} \right)}} + \frac{3}{{5{{x}}y\left( {6{{x}} + y} \right)}} = \frac{{25y}}{{10{{{x}}^2}y\left( {6{{x}} + y} \right)}} + \frac{{6{{x}}}}{{10{{{x}}^2}y\left( {6{{x}} + y} \right)}} = \frac{{25y + 6{{x}}}}{{10{{{x}}^2}y\left( {6{{x}} + y} \right)}}\)
Video hướng dẫn giải
Cộng hai phân thức có cùng mẫu thức nhận được trong HĐ3 ta được kết quả phép cộng \(\frac{1}{x} + \frac{{ - 1}}{y}\)
Phương pháp giải:
Quy đồng mẫu thức rồi cộng các tử thức với nhau và giữ nguyên mẫu thức chung
Lời giải chi tiết:
Có: \(\frac{y}{{xy}} + \frac{{ - x}}{{xy}} = \frac{{y - x}}{{xy}}\)
Vậy: \(\frac{1}{x} + \frac{{ - 1}}{y} = \frac{{y - x}}{{xy}}\)
Video hướng dẫn giải
Quy đồng mẫu hai phân thức: \(\frac{1}{x};\frac{{ - 1}}{y}\)
Phương pháp giải:
Tìm mẫu thức chung của hai phân thức và nhân tử phụ của mỗi phân thức
Lời giải chi tiết:
MTC = xy
Nhân tử phụ của x là: y
Nhân tử phụ của y là: x
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng có: \(\frac{1}{x} = \frac{y}{{xy}}{;^{}}\frac{{ - 1}}{y} = \frac{{ - x}}{{xy}}\)
Video hướng dẫn giải
Quy đồng mẫu hai phân thức: \(\frac{1}{x};\frac{{ - 1}}{y}\)
Phương pháp giải:
Tìm mẫu thức chung của hai phân thức và nhân tử phụ của mỗi phân thức
Lời giải chi tiết:
MTC = xy
Nhân tử phụ của x là: y
Nhân tử phụ của y là: x
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng có: \(\frac{1}{x} = \frac{y}{{xy}}{;^{}}\frac{{ - 1}}{y} = \frac{{ - x}}{{xy}}\)
Video hướng dẫn giải
Cộng hai phân thức có cùng mẫu thức nhận được trong HĐ3 ta được kết quả phép cộng \(\frac{1}{x} + \frac{{ - 1}}{y}\)
Phương pháp giải:
Quy đồng mẫu thức rồi cộng các tử thức với nhau và giữ nguyên mẫu thức chung
Lời giải chi tiết:
Có: \(\frac{y}{{xy}} + \frac{{ - x}}{{xy}} = \frac{{y - x}}{{xy}}\)
Vậy: \(\frac{1}{x} + \frac{{ - 1}}{y} = \frac{{y - x}}{{xy}}\)
Video hướng dẫn giải
Tính tổng: \(\frac{5}{{2{{{x}}^2}\left( {6{{x}} + y} \right)}} + \frac{3}{{5{{x}}y\left( {6{{x}} + y} \right)}}\)
Phương pháp giải:
Áp dụng quy tắc cộng hai phân thức khác mẫu.
Lời giải chi tiết:
Ta có: \(\frac{5}{{2{{{x}}^2}\left( {6{{x}} + y} \right)}} + \frac{3}{{5{{x}}y\left( {6{{x}} + y} \right)}} = \frac{{25y}}{{10{{{x}}^2}y\left( {6{{x}} + y} \right)}} + \frac{{6{{x}}}}{{10{{{x}}^2}y\left( {6{{x}} + y} \right)}} = \frac{{25y + 6{{x}}}}{{10{{{x}}^2}y\left( {6{{x}} + y} \right)}}\)
Mục 2 trang 16 SGK Toán 8 tập 2 - Kết nối tri thức tập trung vào việc vận dụng các kiến thức về hình bình hành để giải các bài toán thực tế. Để giải quyết các bài tập trong mục này, học sinh cần nắm vững các định lý và tính chất cơ bản của hình bình hành, bao gồm:
Dưới đây là hướng dẫn chi tiết giải các bài tập trong mục 2 trang 16:
Hướng dẫn:
Hướng dẫn:
Giaitoan.edu.vn hy vọng rằng với hướng dẫn chi tiết này, bạn sẽ tự tin giải quyết các bài tập trong mục 2 trang 16 SGK Toán 8 tập 2 - Kết nối tri thức. Chúc bạn học tập tốt!