Bài 3.12 trang 56 SGK Toán 8 tập 1 thuộc chương 3: Các góc ở vị trí đặc biệt được tạo bởi một đường thẳng cắt hai đường thẳng. Bài tập này yêu cầu học sinh vận dụng kiến thức về các góc so le trong, đồng vị, trong cùng phía để chứng minh tính chất của các góc.
Giaitoan.edu.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài 3.12 trang 56 SGK Toán 8 tập 1 - Kết nối tri thức, giúp các em học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập.
Cho M là một điểm nằm trong tam giác đều ABC.
Đề bài
Cho M là một điểm nằm trong tam giác đều ABC. Qua M kẻ các đường thẳng song song với BC, CA, AB lần lượt cắt AB, BC, CA tại các điểm P, Q, R.
a) Chứng minh tứ giác APMR là hình thang cân
b) Chứng minh rằng chu vi tam giác PQR bằng tổng độ dài MA + MB + MC.
c) Hỏi với vị trí nào của M thì tam giác PQR là tam giác đều?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Chứng minh: Tứ giác APMR là hình thang có \(\widehat {ABC} = \widehat {APM}\) nên tứ giác APMR là hình thang cân.
b) Chứng minh: AM = PR ; BM = PQ; MC = PQ nên PR + BM + QR = MA + MB + MC.
c) Vì điểm M cách đều ba đỉnh A, B, C của tam giác ABC do đó M là giao điểm của ba đường trung trực của tam giác ABC.
Lời giải chi tiết
a) Vì tam giác ABC đều nên \(\widehat {BAC} = \widehat {ABC} = \widehat {ACB} = {60^o}\)
Vì PM // BC nên \(\widehat {ABC} = \widehat {APM} = {60^o}\) (hai góc đồng vị)
suy ra \(\widehat {BAC} = \widehat {APM} \)
Tứ giác APMR là hình thang (vì MR // AP) có \(\widehat {BAC} = \widehat {APM}\)
Do đó tứ giác APMR là hình thang cân.
b) Vì tứ giác APMR là hình thang cân nên AM = PR (1)
Vì MQ // AC nên \(\widehat {BQM} = \widehat {ACB} = {60^o}\) (hai góc đồng vị)
suy ra \(\widehat {ABC} = \widehat {BQM} \)
Tứ giác BPMQ là hình thang (vì PM // BQ) có \(\widehat {ABC} = \widehat {BQM} \) nên BPMQ là hình thang cân.
Suy ra BM = PQ (2)
Tương tự, tứ giác QMRC là hình thang (vì QM // RC) có \(\widehat {MRC} = \widehat {RCQ}\) (cùng bằng góc BAC) nên QMRC là hình thang cân.
Suy ra MC = QR (3)
Từ (1); (2) và (3) suy ra PR + BM + QR = MA + MB + MC.
Do đó chu vi tam giác PQR bằng tổng độ dài MA + MB + MC (đpcm).
c) Vì chu vi tam giác PQR bằng tổng độ dài MA + MB + MC
Để tam giác PQR là tam giác đều thì PQ = QR = PR suy ra MA = MB = MC
Khi đó điểm M cách đều ba đỉnh A, B, C của tam giác ABC.
Do đó M là giao điểm của ba đường trung trực (đồng thời M cũng là giao điểm của ba đường trung tuyến, ba đường cao, đường phân giác).
Vậy khi M là giao điểm của ba đường trung trực thì tam giác PQR là tam giác đều.
Bài 3.12 trang 56 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về các góc tạo bởi một đường thẳng cắt hai đường thẳng song song. Để giải bài tập này, học sinh cần nắm vững các khái niệm và tính chất sau:
Đề bài: Cho hình vẽ sau (hình vẽ minh họa với hai đường thẳng a và b song song, đường thẳng c cắt a và b). Biết góc A1 = 60 độ. Tính các góc còn lại.
Lời giải:
Để hiểu rõ hơn về cách giải bài tập về các góc tạo bởi một đường thẳng cắt hai đường thẳng song song, chúng ta cùng xem xét một ví dụ minh họa sau:
Ví dụ: Cho hình vẽ, biết a // b và góc C = 110 độ. Tính góc D.
Lời giải: Vì a // b nên góc C và góc D là hai góc trong cùng phía, do đó góc C + góc D = 180 độ. Suy ra góc D = 180 độ - 110 độ = 70 độ.
Để rèn luyện kỹ năng giải bài tập về các góc tạo bởi một đường thẳng cắt hai đường thẳng song song, các em có thể tự giải các bài tập sau:
Bài 3.12 trang 56 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về các góc tạo bởi một đường thẳng cắt hai đường thẳng song song. Hy vọng với lời giải chi tiết và các ví dụ minh họa trên, các em học sinh sẽ nắm vững kiến thức và giải bài tập một cách hiệu quả.