Giaitoan.edu.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 1 trang 22, 23 sách giáo khoa Toán 8 tập 1 chương trình Kết nối tri thức. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi cung cấp đáp án đầy đủ, kèm theo các bước giải chi tiết, giúp các em học sinh có thể tự học tại nhà hoặc ôn tập kiến thức một cách hiệu quả.
Hãy nhớ lại cách chia đơn thức cho đơn thức trong trường hợp chúng có một biến và hoàn thành các yêu cầu sau:
Video hướng dẫn giải
Trong các phép chia sau đây, phép chia nào không là phép chia hết? Tại sao? Tìm thương của các phép chia còn lại:
a) \( - 15{x^2}{y^2}\) chia cho \(3{x^2}y\);
b) \(6xy\) chia cho \(2yz\);
c) \(4x{y^3}\) chia cho \(6x{y^2}\).
Phương pháp giải:
Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Muốn chia đơn thức A cho đơn thức B, ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
a)
\( - 15{x^2}{y^2}:3{x^2}y = \left( { - 15:3} \right).\left( {{x^2}:{x^2}} \right):\left( {{y^2}:y} \right) = - 5y\)
b)
Không là phép chia hết vì số mũ của biến z trong \(2yz\) lớn hơn số mũ của biến z trong \(6xy\).
c)
\(4x{y^3}:6x{y^2} = \left( {4:6} \right).\left( {x:x} \right).\left( {{y^3}:{y^2}} \right) = \dfrac{2}{3}y\)
Video hướng dẫn giải
Với mỗi trường hợp sau, hãy đoán xem đơn thức A có chia hết cho đơn thức B không; nếu chia hết, hãy tìm thương của phép chia A cho B và giải thích cách làm:
a) \(A = 6{x^3}y,B = 3{x^2}y\)
b) \(A = {x^2}y,B = x{y^2}\)
Phương pháp giải:
Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Muốn chia đơn thức A cho đơn thức B, ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
a) Đơn thức A chia hết cho đơn thức B:
\(A:B = 6{x^3}y:3{x^2}y = \left( {6:3} \right).\left( {{x^3}:{x^2}} \right).\left( {y:y} \right) = 2x\)
b) Đơn thức A không chia hết cho đơn thức B vì số mũ của biến y trong B lớn hơn số mũ của biến y trong A.
Video hướng dẫn giải
Giải bài toán mở đầu:
Phương pháp giải:
Muốn chia đơn thức A cho đơn thức B, ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
Chiều cao của khối hộp thứ hai là: \(6{x^2}y:2xy = \left( {6:2} \right).\left( {{x^2}:x} \right).\left( {y:y} \right) = 3x\)
Video hướng dẫn giải
Hãy nhớ lại cách chia đơn thức cho đơn thức trong trường hợp chúng có một biến và hoàn thành các yêu cầu sau:
a) Thực hiện phép chia \(6{x^3}:3{x^2}\).
b) Với \(a,b \in \mathbb{R}\) và \(b \ne 0;m,n \in \mathbb{N}\), hãy cho biết:
Phương pháp giải:
Muốn chia đơn thức cho đơn thức, ta chia phần hệ số cho nhau, chia lũy thừa của biến cho nhau rồi nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
a) \(6{x^3}:3{x^2} = \left( {6:3} \right).\left( {{x^3}:{x^2}} \right) = 2x\)
b) * Khi \(m \ge n\)
* Để chia \(a{x^m}\) cho \(b{x^n}\) ta thực hiện phép chia a:b và \({x^m}:{x^n}\) rồi nhân 2 kết quả với nhau.
Video hướng dẫn giải
Hãy nhớ lại cách chia đơn thức cho đơn thức trong trường hợp chúng có một biến và hoàn thành các yêu cầu sau:
a) Thực hiện phép chia \(6{x^3}:3{x^2}\).
b) Với \(a,b \in \mathbb{R}\) và \(b \ne 0;m,n \in \mathbb{N}\), hãy cho biết:
Phương pháp giải:
Muốn chia đơn thức cho đơn thức, ta chia phần hệ số cho nhau, chia lũy thừa của biến cho nhau rồi nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
a) \(6{x^3}:3{x^2} = \left( {6:3} \right).\left( {{x^3}:{x^2}} \right) = 2x\)
b) * Khi \(m \ge n\)
* Để chia \(a{x^m}\) cho \(b{x^n}\) ta thực hiện phép chia a:b và \({x^m}:{x^n}\) rồi nhân 2 kết quả với nhau.
Video hướng dẫn giải
Với mỗi trường hợp sau, hãy đoán xem đơn thức A có chia hết cho đơn thức B không; nếu chia hết, hãy tìm thương của phép chia A cho B và giải thích cách làm:
a) \(A = 6{x^3}y,B = 3{x^2}y\)
b) \(A = {x^2}y,B = x{y^2}\)
Phương pháp giải:
Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Muốn chia đơn thức A cho đơn thức B, ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
a) Đơn thức A chia hết cho đơn thức B:
\(A:B = 6{x^3}y:3{x^2}y = \left( {6:3} \right).\left( {{x^3}:{x^2}} \right).\left( {y:y} \right) = 2x\)
b) Đơn thức A không chia hết cho đơn thức B vì số mũ của biến y trong B lớn hơn số mũ của biến y trong A.
Video hướng dẫn giải
Trong các phép chia sau đây, phép chia nào không là phép chia hết? Tại sao? Tìm thương của các phép chia còn lại:
a) \( - 15{x^2}{y^2}\) chia cho \(3{x^2}y\);
b) \(6xy\) chia cho \(2yz\);
c) \(4x{y^3}\) chia cho \(6x{y^2}\).
Phương pháp giải:
Đơn thức A chia hết cho đơn thức B nếu mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.
Muốn chia đơn thức A cho đơn thức B, ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
a)
\( - 15{x^2}{y^2}:3{x^2}y = \left( { - 15:3} \right).\left( {{x^2}:{x^2}} \right):\left( {{y^2}:y} \right) = - 5y\)
b)
Không là phép chia hết vì số mũ của biến z trong \(2yz\) lớn hơn số mũ của biến z trong \(6xy\).
c)
\(4x{y^3}:6x{y^2} = \left( {4:6} \right).\left( {x:x} \right).\left( {{y^3}:{y^2}} \right) = \dfrac{2}{3}y\)
Video hướng dẫn giải
Giải bài toán mở đầu:
Phương pháp giải:
Muốn chia đơn thức A cho đơn thức B, ta làm như sau:
+ Chia hệ số của đơn thức A cho hệ số của đơn thức B.
+ Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.
+ Nhân các kết quả tìm được với nhau.
Lời giải chi tiết:
Chiều cao của khối hộp thứ hai là: \(6{x^2}y:2xy = \left( {6:2} \right).\left( {{x^2}:x} \right).\left( {y:y} \right) = 3x\)
Mục 1 trang 22, 23 SGK Toán 8 tập 1 - Kết nối tri thức tập trung vào việc ôn tập các kiến thức về đa thức và các phép toán trên đa thức. Đây là nền tảng quan trọng để học sinh tiếp thu các kiến thức mới trong chương trình Toán 8. Việc nắm vững các khái niệm và kỹ năng trong mục này sẽ giúp học sinh giải quyết các bài toán phức tạp hơn một cách dễ dàng.
Bài 1: Viết một đa thức có ba biến bậc 3.
Giải: Một ví dụ về đa thức có ba biến bậc 3 là: 2x2y + 3xy2z - 5x3.
Bài 2: Tính giá trị của đa thức P = x2y + 2xy - y2 tại x = 1, y = -1.
Giải: Thay x = 1 và y = -1 vào đa thức P, ta có:
P = (1)2(-1) + 2(1)(-1) - (-1)2 = -1 - 2 - 1 = -4.
Bài 3: Thực hiện phép tính: (3x2 - 5x + 2) + (x2 + 3x - 1)
Giải: (3x2 - 5x + 2) + (x2 + 3x - 1) = 3x2 + x2 - 5x + 3x + 2 - 1 = 4x2 - 2x + 1.
Bài 4: Thực hiện phép tính: (2x - 1)(x + 3)
Giải: (2x - 1)(x + 3) = 2x(x + 3) - 1(x + 3) = 2x2 + 6x - x - 3 = 2x2 + 5x - 3.
Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin hơn khi học tập và giải các bài tập trong mục 1 trang 22, 23 SGK Toán 8 tập 1 - Kết nối tri thức. Chúc các em học tốt!