Bài 4.14 trang 88 SGK Toán 8 tập 1 thuộc chương 4: Các tứ giác đặc biệt. Bài tập này yêu cầu học sinh vận dụng kiến thức về hình thang cân, tính chất đường trung bình của hình thang để giải quyết. Giaitoan.edu.vn sẽ cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 8, Toán 7, Toán 6, Toán 9, Toán 10, Toán 11, Toán 12.
Cho tứ giác ABCD,
Đề bài
Cho tứ giác ABCD, gọi E, F, K lần lượt là trung điểm của AD, BC, AC.
a) Chứng minh EK // CD, FK // AB.
b) So sánh EF và \(\dfrac{1}{2}(AB + C{\rm{D}})\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a. Chứng minh EK là đường trung bình của tam giác ACD; FK là đường trung bình của tam giác ABC, suy ra EK // CD, FK // AB.
b. Áp dụng tính chất đường trung bình với EK và FK trong tam giác ACD, ABC. Áp dụng bất đẳng thức "Với ba điểm A, B, C bất kỳ, ta có AB + AC ≥ BC" suy ra đpcm.
Lời giải chi tiết
a) Vì E, K lần lượt là trung điểm của AD, AC nên EK là đường trung bình của tam giác ACD suy ra EK // CD.
Vì K, F lần lượt là trung điểm của AC, BC nên KF là đường trung bình của tam giác ABC suy ra KF // AB.
Vậy EK // CD, FK // AB.
b) Vì EK là đường trung bình của tam giác ACD nên \(EK = \dfrac{1}{2}C{\rm{D}}\);
Vì KF là đường trung bình của tam giác ABC nên \(KF = \dfrac{1}{2}AB\).
Do đó \(EK + KF = \dfrac{1}{2}(AB + C{\rm{D}})\) (1)
Ta có: \(EF \le EK + KF\) (2)
Từ (1) và (2) ta suy ra \(EF \le \dfrac{1}{2}(AB + C{\rm{D}})\).
Bài 4.14 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng trong chương trình học Toán 8, tập trung vào việc vận dụng các kiến thức về hình thang cân và đường trung bình của hình thang. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và tính chất sau:
Trước khi bắt tay vào giải bài tập, học sinh cần đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho. Sau đó, phân tích đề bài để tìm ra mối liên hệ giữa các yếu tố và lựa chọn phương pháp giải phù hợp. Thông thường, để giải bài tập về hình thang cân, học sinh có thể sử dụng các phương pháp sau:
(Nội dung lời giải chi tiết bài tập 4.14 sẽ được trình bày tại đây, bao gồm các bước giải, các phép tính và các giải thích rõ ràng. Ví dụ:)
Đề bài: Cho hình thang cân ABCD (AB // CD), AB = 5cm, CD = 10cm, AD = 6cm. Tính độ dài đường cao của hình thang.
Lời giải:
Kẻ AH và BK vuông góc với CD (H, K thuộc CD). Khi đó, AH = BK là đường cao của hình thang.
Vì ABCD là hình thang cân nên DH = KC = (CD - AB) / 2 = (10 - 5) / 2 = 2.5cm.
Xét tam giác vuông ADH, ta có: AH2 = AD2 - DH2 = 62 - 2.52 = 36 - 6.25 = 29.75.
Suy ra, AH = √29.75 ≈ 5.45cm.
Vậy, độ dài đường cao của hình thang là khoảng 5.45cm.
Để củng cố kiến thức và kỹ năng giải bài tập về hình thang cân, học sinh nên luyện tập thêm các bài tập tương tự. Dưới đây là một số gợi ý:
Bài 4.14 trang 88 SGK Toán 8 tập 1 - Kết nối tri thức là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hình thang cân và đường trung bình của hình thang. Bằng cách nắm vững các khái niệm, tính chất và phương pháp giải bài tập, học sinh có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn hy vọng rằng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ hiểu rõ hơn về bài tập và có thêm động lực để học tập môn Toán.