Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 8 tại giaitoan.edu.vn. Ở bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục 2 trang 8,9 sách giáo khoa Toán 8 tập 1 chương trình Kết nối tri thức.
Mục tiêu của chúng tôi là cung cấp cho các em những lời giải chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho đơn thức một biến (M = 3{x^2}). Hãy viết ba đơn thức biến (x), cùng bậc với M rồi so sánh phần biến của các đơn thức đó.
Video hướng dẫn giải
Cho đơn thức một biến \(M = 3{x^2}\). Hãy viết ba đơn thức biến \(x\), cùng bậc với M rồi so sánh phần biến của các đơn thức đó.
Phương pháp giải:
Viết đơn thức biến \(x\), có bậc là 2
Lời giải chi tiết:
Các đơn thức:\({x^2}; - 2{x^2};\dfrac{1}{3}{x^2}\)
Các đơn thức này có phần biến giống nhau.
Video hướng dẫn giải
Xét ba đơn thức \(A = 2{x^2}{y^3},B = - \dfrac{1}{2}{x^2}{y^3}\) và \(C = {x^3}{y^2}\).
So sánh:
a) Bậc của ba đơn thức A,B và C.
b) Phần biến của ba đơn thức A,B và C.
Phương pháp giải:
+) Phần biến là phần còn lại trong đơn thức (không là phần số)
+) Tổng số mũ của các biến trong đơn thức có hệ số khác 0 là bậc của đơn thức.
Lời giải chi tiết:
Đơn thức A có bậc là 2+3=5, phần biến là \({x^2}{y^3}\).
Đơn thức B có bậc là 2+3=5, phần biến là \({x^2}{y^3}\).
Đơn thức C có bậc là 3+2=5, phần biến là \({x^3}{y^2}\).
a) Bậc của ba đơn thức bằng nhau (bằng 5).
b) Phần biến của đơn thức A và B giống nhau, khác phần biến của đơn thức C.
Video hướng dẫn giải
Cho các đơn thức:
\(\dfrac{5}{3}{x^2}y; - x{y^2};0,5{x^4}; - 2x{y^2};2,75{x^4}; - \dfrac{1}{4}{x^2}y;3x{y^2}.\)
Hãy sắp xếp các đơn thức đã cho thành từng nhóm, sao cho tất cả các đơn thức đồng dạng thì thuộc cùng một nhóm.
Phương pháp giải:
Các đơn thức đồng dạng là các đơn thức với hệ số khác 0 và có phần biến giống nhau.
Lời giải chi tiết:
Nhóm 1: \(\dfrac{5}{3}{x^2}y; - \dfrac{1}{4}{x^2}y.\)
Nhóm 2: \( - x{y^2}; - 2x{y^2};3x{y^2}.\)
Nhóm 3: \(0,5{x^4};2,75{x^4}.\)
Video hướng dẫn giải
Ta đã biết nếu hai đơn thức một biến có cùng biến và có cùng bậc thì đồng dạng với nhau. Hỏi điều đó có còn đúng không đối với hai đơn thức hai biến (nhiều hơn một biến)?
Phương pháp giải:
Tổng số mũ của các biến trong đơn thức có hệ số khác 0 là bậc của đơn thức.
Không vì có nhiều đơn thức cùng bậc nhưng phần biến khác nhau.
Chẳng hạn: Đơn thức \(2{x^2}y\) và \( - x{y^2}\) đều có bậc là 3 nhưng phần biến khác nhau.
Lời giải chi tiết:
Không vì có nhiều đơn thức cùng bậc nhưng phần biến khác nhau.
Chẳng hạn: Đơn thức \(2{x^2}y\) và \( - x{y^2}\) đều có bậc là 3 nhưng phần biến khác nhau.
Video hướng dẫn giải
Quan sát ví dụ sau:
\(2,{5.3^2}{.5^3} + 8,{5.3^2}{.5^3} = \left( {2,5 + 8,5} \right){.3^2}{.5^3} = {11.3^2}{.5^3}.\)
Trong ví dụ này, ta đã vận dụng tính chất gì của phép nhân để thu gọn tổng ban đầu?
Phương pháp giải:
Tính chất của phép nhân
Lời giải chi tiết:
Ta đã vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Video hướng dẫn giải
Cho hai đơn thức đồng dạng \(M = 2,5{x^2}{y^3}\) và \(P = 8,5{x^2}{y^3}\). Tương tự HĐ5, hãy:
a) Thu gọn tổng M+P.
b) Thu gọn hiệu M-P.
Phương pháp giải:
Vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Lời giải chi tiết:
a) \(M + P = 2,5{x^2}{y^3} + 8,5{x^2}{y^3} = 11{x^2}{y^3}.\)
b) \(M - P = 2,5{x^2}{y^3} - 8,5{x^2}{y^3} = - 6{x^2}{y^3}.\)
Video hướng dẫn giải
Trở lại các lập luận của Tròn và Vuông trong tình huống mở đầu. Hãy trả lời và giải thích rõ tại sao.
Phương pháp giải:
Vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Lời giải chi tiết:
Theo em, hai bạn đều đúng. Tuy nhiên, biểu thức của bạn Vuông chưa thu gọn, bạn cần thu gọn \(12xy + 4,5xy = \left( {12 + 4,5} \right)xy = 16,5xy.\)
Video hướng dẫn giải
Cho các đơn thức \( - {x^3}y;4{x^3}y\) và \( - 2{x^3}y.\)
a) Tính tổng S của ba đơn thức đó.
b) Tính giá trị của tổng S tại \(x = 2;y = - 3.\)
Phương pháp giải:
Vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Lời giải chi tiết:
a) \(S = - {x^3}y + 4{x^3}y + \left( { - 2{x^3}y} \right) = \left( { - 1 + 4 - 2} \right){x^3}y = {x^3}y.\)
b) Thay \(x = 2;y = - 3\) vào S ta được: \(S = {2^3}.\left( { - 3} \right) = - 24.\)
Video hướng dẫn giải
Cho đơn thức một biến \(M = 3{x^2}\). Hãy viết ba đơn thức biến \(x\), cùng bậc với M rồi so sánh phần biến của các đơn thức đó.
Phương pháp giải:
Viết đơn thức biến \(x\), có bậc là 2
Lời giải chi tiết:
Các đơn thức:\({x^2}; - 2{x^2};\dfrac{1}{3}{x^2}\)
Các đơn thức này có phần biến giống nhau.
Video hướng dẫn giải
Xét ba đơn thức \(A = 2{x^2}{y^3},B = - \dfrac{1}{2}{x^2}{y^3}\) và \(C = {x^3}{y^2}\).
So sánh:
a) Bậc của ba đơn thức A,B và C.
b) Phần biến của ba đơn thức A,B và C.
Phương pháp giải:
+) Phần biến là phần còn lại trong đơn thức (không là phần số)
+) Tổng số mũ của các biến trong đơn thức có hệ số khác 0 là bậc của đơn thức.
Lời giải chi tiết:
Đơn thức A có bậc là 2+3=5, phần biến là \({x^2}{y^3}\).
Đơn thức B có bậc là 2+3=5, phần biến là \({x^2}{y^3}\).
Đơn thức C có bậc là 3+2=5, phần biến là \({x^3}{y^2}\).
a) Bậc của ba đơn thức bằng nhau (bằng 5).
b) Phần biến của đơn thức A và B giống nhau, khác phần biến của đơn thức C.
Video hướng dẫn giải
Cho các đơn thức:
\(\dfrac{5}{3}{x^2}y; - x{y^2};0,5{x^4}; - 2x{y^2};2,75{x^4}; - \dfrac{1}{4}{x^2}y;3x{y^2}.\)
Hãy sắp xếp các đơn thức đã cho thành từng nhóm, sao cho tất cả các đơn thức đồng dạng thì thuộc cùng một nhóm.
Phương pháp giải:
Các đơn thức đồng dạng là các đơn thức với hệ số khác 0 và có phần biến giống nhau.
Lời giải chi tiết:
Nhóm 1: \(\dfrac{5}{3}{x^2}y; - \dfrac{1}{4}{x^2}y.\)
Nhóm 2: \( - x{y^2}; - 2x{y^2};3x{y^2}.\)
Nhóm 3: \(0,5{x^4};2,75{x^4}.\)
Video hướng dẫn giải
Ta đã biết nếu hai đơn thức một biến có cùng biến và có cùng bậc thì đồng dạng với nhau. Hỏi điều đó có còn đúng không đối với hai đơn thức hai biến (nhiều hơn một biến)?
Phương pháp giải:
Tổng số mũ của các biến trong đơn thức có hệ số khác 0 là bậc của đơn thức.
Không vì có nhiều đơn thức cùng bậc nhưng phần biến khác nhau.
Chẳng hạn: Đơn thức \(2{x^2}y\) và \( - x{y^2}\) đều có bậc là 3 nhưng phần biến khác nhau.
Lời giải chi tiết:
Không vì có nhiều đơn thức cùng bậc nhưng phần biến khác nhau.
Chẳng hạn: Đơn thức \(2{x^2}y\) và \( - x{y^2}\) đều có bậc là 3 nhưng phần biến khác nhau.
Video hướng dẫn giải
Quan sát ví dụ sau:
\(2,{5.3^2}{.5^3} + 8,{5.3^2}{.5^3} = \left( {2,5 + 8,5} \right){.3^2}{.5^3} = {11.3^2}{.5^3}.\)
Trong ví dụ này, ta đã vận dụng tính chất gì của phép nhân để thu gọn tổng ban đầu?
Phương pháp giải:
Tính chất của phép nhân
Lời giải chi tiết:
Ta đã vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Video hướng dẫn giải
Cho hai đơn thức đồng dạng \(M = 2,5{x^2}{y^3}\) và \(P = 8,5{x^2}{y^3}\). Tương tự HĐ5, hãy:
a) Thu gọn tổng M+P.
b) Thu gọn hiệu M-P.
Phương pháp giải:
Vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Lời giải chi tiết:
a) \(M + P = 2,5{x^2}{y^3} + 8,5{x^2}{y^3} = 11{x^2}{y^3}.\)
b) \(M - P = 2,5{x^2}{y^3} - 8,5{x^2}{y^3} = - 6{x^2}{y^3}.\)
Video hướng dẫn giải
Cho các đơn thức \( - {x^3}y;4{x^3}y\) và \( - 2{x^3}y.\)
a) Tính tổng S của ba đơn thức đó.
b) Tính giá trị của tổng S tại \(x = 2;y = - 3.\)
Phương pháp giải:
Vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Lời giải chi tiết:
a) \(S = - {x^3}y + 4{x^3}y + \left( { - 2{x^3}y} \right) = \left( { - 1 + 4 - 2} \right){x^3}y = {x^3}y.\)
b) Thay \(x = 2;y = - 3\) vào S ta được: \(S = {2^3}.\left( { - 3} \right) = - 24.\)
Video hướng dẫn giải
Trở lại các lập luận của Tròn và Vuông trong tình huống mở đầu. Hãy trả lời và giải thích rõ tại sao.
Phương pháp giải:
Vận dụng tính chất phân phối của phép nhân đối với phép cộng: \(a.b + c.b = \left( {a + c} \right).b\).
Lời giải chi tiết:
Theo em, hai bạn đều đúng. Tuy nhiên, biểu thức của bạn Vuông chưa thu gọn, bạn cần thu gọn \(12xy + 4,5xy = \left( {12 + 4,5} \right)xy = 16,5xy.\)
Mục 2 của chương trình Toán 8 tập 1 Kết nối tri thức tập trung vào việc ôn tập và mở rộng kiến thức về các phép toán với đa thức. Các bài tập trong mục này yêu cầu học sinh vận dụng các quy tắc cộng, trừ, nhân, chia đa thức, đồng thời rèn luyện kỹ năng biến đổi đại số và giải quyết bài toán thực tế.
Bài 1 yêu cầu học sinh thực hiện các phép cộng, trừ, nhân, chia đa thức. Để giải bài tập này, học sinh cần nắm vững các quy tắc sau:
Ví dụ:
Tính: (2x2 + 3x - 1) + (x2 - 2x + 3)
Giải:
(2x2 + 3x - 1) + (x2 - 2x + 3) = 2x2 + x2 + 3x - 2x - 1 + 3 = 3x2 + x + 2
Bài 2 yêu cầu học sinh tìm giá trị của biểu thức đa thức tại một giá trị cụ thể của biến. Để giải bài tập này, học sinh cần thay giá trị của biến vào biểu thức và thực hiện các phép tính.
Ví dụ:
Tìm giá trị của biểu thức P = x2 - 3x + 2 khi x = -1
Giải:
P = (-1)2 - 3(-1) + 2 = 1 + 3 + 2 = 6
Bài 3 yêu cầu học sinh rút gọn biểu thức đa thức. Để giải bài tập này, học sinh cần sử dụng các quy tắc cộng, trừ, nhân, chia đa thức để biến đổi biểu thức về dạng đơn giản nhất.
Ví dụ:
Rút gọn biểu thức: A = (x + 2)(x - 2) + x2
Giải:
A = (x2 - 4) + x2 = 2x2 - 4
Bài 4 yêu cầu học sinh giải phương trình đa thức. Để giải bài tập này, học sinh cần sử dụng các phương pháp giải phương trình đã học, chẳng hạn như phương pháp phân tích thành nhân tử, phương pháp sử dụng công thức nghiệm.
Ví dụ:
Giải phương trình: x2 - 5x + 6 = 0
Giải:
Phương trình có thể được phân tích thành nhân tử như sau: (x - 2)(x - 3) = 0
Vậy, phương trình có hai nghiệm: x = 2 và x = 3
Hy vọng với những hướng dẫn chi tiết trên, các em học sinh đã có thể tự tin giải các bài tập trong mục 2 trang 8,9 SGK Toán 8 tập 1 Kết nối tri thức. Chúc các em học tập tốt!